pzn
- Personalization terms
- Accumulator | LikeMinds utilities
- Actions
- Allowable confidence levels
- Allowable rating values
- APIs for multivalue properties
- Application object
- Arithmetic expressions rule
- Example: Arithmetic operation
- Assigning attribute based administration rules to pages and portlets
- Attribute Based Administration
- Automatically clearing your cache entry
- The LikeMinds utilities
- Best Bets values
- Bindings
- Buildstats | LikeMinds utilities
- Campaigns
- Category beans
- Category beans reference
- CategoryEvent class
- Classes and APIs for writing custom listeners
- Clickstream Engine | LikeMinds for HCL WebSphere Portal
- Configuring LikeMinds utilities
- Configuring the Clickstream Engine
- Configuring the Item Affinity Engine
- Configuring LikeMinds
- Configure the LikeMinds engines
- Configuring the Preference engine
- Configuring the sifter for mentor selection
- Content resources
- Content spot exits
- Content spots
- Count of rule element
- Current Action Count or Name rule
- Current Browser Capability rule
- Current Date rule element
- Current Request Attributes rule
- Current Request Parameters rule
- Current Session Attributes rule
- Custom listener classes
- Custom log listeners
- Customized feedback listeners
- CustomLog beans
- CustomLog beans reference
- CustomLogEvent class
- Database performance | LikeMinds configuration
- Default Clickstream Engine recommendations
- Default Preference Engine recommendations
- Change content spot rule mapping
- Create additional advanced rules
- Create a content spot
- Create the JSP file in Rational Application Developer
- Create the Personalization content resource classes and content spot
- Creating the Personalization user resource classes and content spot
- Create a simple content rule
- Create the user profiler rule
- Enhance the Personalized Portlet
- Export the WAR file and install the portlet
- PZN - Coding the portlet JSP
- Import Personalization Workspace resource collections
- Insert dynamic table HTML/JSP code
- Personalized List portlet
- Modify resource collection properties
- Install the Personalization sample
- Developing a personalized portlet
- Prerequisites for the Personalization portlet exercise
- Uninstall Personalization sample and database
- Publishing personalization rules
- do Action rule element
- Email action or promotion
- Email administration
- Enabling or disabling the use of archetypes
- Enable logging
- Changing the error condition behavior
- Estimating database size | LikeMinds configuration
- Example: Browser capability
- Example: Category Count
- Example: "Count of"
- Example: Multiple profilers and optional actions
- Example: Nested bindings (simple)
- Example: Nested bindings (advanced)
- Example: Nested profiler
- Example: Request attributes and session attributes
- Example: Simple binding
- Example: Simple email action
- Example: Simple profiler
- Example: Simple select content action
- Example: Simple update action
- Example: Show page or portlet
- Exploring Movie Site
- Feedback database schema
- Feedback properties file
- Feedback schema tables
- Feedback subsystem overview
- Feedback and analytics
- FeedbackListener
- Filtering LikeMinds recommendations
- General tips
- Generic query framework
- Guidelines for configurable recommendation dynamics
- How a site is personalized
- Implementing action logging
- Implementing category logging
- Implementing custom logging
- Implementing PageView logging
- Implementing rating logging
- Include Only rule element
- is rule element
- Item Affinity Engine | LikeMinds for HCL WebSphere Portal
- Key value pairs
- LikeMinds Recommendations
- How LikeMinds generates recommendations
- LikeMinds Recommendation Engine architecture
- The LikeMinds Recommendation Engines
- LMListener
- Listeners and persistence
- LogEvent class
- Logging beans
- LogManager
- Rule spot mappings
- Maximum number of mentors assigned to each user
- Maximum ratings a user needs before becoming a mentor
- Maximum transactions a user needs before becoming a mentor
- Mentor selection and assignment
- How the mentor selection process works
- Mentors to look for in cache | LikeMinds engine
- Minimum number of Clickstream activities for a user
- Minimum mentors the engine examines for predictability
- Minimum number of ratings for user recommendations
- MovieSite Sample
- Number of mentors to use | LikeMinds engine
- Number of sift priority users per batch
- order as is rule element
- Portal Personalization
- PageView beans
- PageView beans reference
- PageViewEvent class
- Pausing the sifter during heavy database
- The Personalization interface
- Prediction quality values
- Preference Engine | LikeMinds for HCL WebSphere Portal
- Prepare the personalized application
- Preventing multiple sifters from sifting the same user
- Profile rule element
- Profiler rule element
- Profilers
- Programmatically starting rules
- Programming model
- Personalization programming reference
- Publishing considerations
- Publishing and deleting personalization rules using a script
- Publishing personalization rules over SSL
- Monitoring the status of publishing
- Publishing personalization rules
- Query framework
- Quick Profiler rule
- Ratability parameters
- Rating beans
- Rating beans reference
- RatingEvent class
- Recomputing (rebuilding) the mentor pool
- Recommend Content
- Recomputing Clickstream Engine predictions
- Recomputing Preference engine predictions
- Repeated items in visit list
- Reports
- Request Context
- Request Context
- Resource cache
- Resource interface
- ResourceInfo class
- Resources, resource instances, and resource collections
- Rule elements
- Rule Exception Handling in the run-time environment
- Rule logging
- RuleEvent class
- RuleInfo class
- Rules
- Running multiple sifters
- How the rules engine works
- Sample Personalization resources XML file
- Scheduling LikeMinds events
- sender rule element
- Setting the number of archetypes in cache
- Number of threads to sift users
- set to rule element
- Sifter | LikeMinds utilities
- Sifter-specific mentor set configuration
- Sifter performance considerations
- Sifter sleep time when the Lps_User_Data sift_pri field Is 0
- Specifying recommendation behavior
- Time interval for checking sift priority
- Use of "average user" to improve LikeMinds recommendation confidence
- Use and number of archetypes | LikeMinds engine
- User and content models
- User predictability
- User predictability | LikeMinds engine
- User resources
- Using the Personalization APIs
- Using the Generic Query Framework
- Using the LikeMinds utilities
- The Portal User resource collection
- value rule element
- Visibility Rules
- The Web Content resource collection
- Workload management