Personalization
- Accumulator
- Administer LikeMinds Recommendation Engines
- Allowable confidence levels
- Application object
- Arithmetic expressions
- Example: Arithmetic operation
- Attribute Based Administration - WebSphere Portal v6
- Basic LikeMinds server configuration
- Bindings
- Campaigns
- CategoryEvent class
- Clickstream Engine
- Personalization Concepts - WebSphere Portal v6
- Configure LikeMinds utilities
- Configure the Clickstream Engine
- Configure LikeMinds servers
- Configure the LikeMinds engines
- Configure the LikeMinds server for the database
- Configure the Preference Engine
- Configure the sifter for mentor selection
- Configure Personalization after installation
- Content resources
- Content spots
- Current Action Count or Action Name
- Current Date - WebSphere Portal v6
- Current Request Attributes
- Current Request Parameters - WebSphere Portal v6
- Current Session Attributes
- CustomLog beans
- CustomLog beans reference
- CustomLogEvent class
- Database performance
- Default Preference Engine recommendations
- Publishing rules
- Enabling or disabling the use of archetypes
- Enable Personalization logging - WebSpher Portal v6
- Example: Browser capability
- Example: "Count of" (quantifiable condition)
- Example: Nested profiler
- Example: Request attributes and session attributes
- Example: Simple binding
- Example: Simple e-mail action
- Example: Simple profiler
- Example: Simple select content action
- Example: Simple update action
- Example: Show page or portlet
- Exploring Movie Site
- Feedback database schema
- Feedback schema diagram
- Feedback and analytics
- FeedbackListener
- Generic query framework
- Guidelines for configurable recommendation dynamics
- Implementing category logging
- Implementing custom logging
- Implementing PageView logging
- Implementing rating logging
- Introduction to Personalization - WebSphere Portal v6.0
- An introduction to LikeMinds
- is
- Personalization jar files that
- LikeMinds Recommendation Engine
- The LikeMinds Recommendation Engines
- LMListener
- Logging beans
- LogManager
- Mapping symbolic database table and field names
- Rule spot mappings
- Maximum number of mentors assigned to each user
- Maximum ratings a user needs before becoming a mentor
- Maximum transactions a user needs before becoming a mentor
- Mentors to look for in cache
- Minimum number of Clickstream activities for
- Minimum mentors the engine examines for predictability
- Minimum number of ratings for user recommendations
- Number of mentors to use
- Number of sift priority users per batch
- Number of users and items in the cache
- order as is
- Personalization Overview
- PageView beans
- PageView beans reference
- PageViewEvent class
- Pausing the sifter during heavy database
- The Personalization interface
- Preference Engine
- Previewing a Recommend Content rule
- Profile
- Profiler
- Profilers
- Programmatically invoking rules
- Personalization programming reference
- Query framework - WebSphere Portal v6
- Quick Profiler
- Rating beans
- Recomputing Clickstream Engine predictions
- Recomputing Preference Engine predictions
- Repeated items in visit list
- Reports
- Request Context - WebSphere Portal v6
- Resources, resource instances, and resource collections - WebSphere Portal v6
- Rule elements
- Rule logging
- RuleInfo class
- Rules
- Run multiple sifters
- Sample Personalization resources XML file
- Scheduling LikeMinds Events
- sender
- Set the number of archetypes in cache
- Number of threads to sift users
- set to
- Sifter
- Sifter performance considerations
- Sifter sleep time when the Lps_User_Data sift_pri field Is 0
- Specifying cache behavior
- Specifying recommendation behavior
- Specifying transaction information on a per activity
- Time interval for checking sift priority
- Time users and items are kept in the cache
- Use of "average user" to improve recommendation
- Use and number of archetypes
- User and items cache management
- User predictability
- User predictability
- Using the Personalization APIs
- Using the LikeMinds utilities
- Use rules
- Visibility Rules
- Develop a personalized portlet
- Prerequisites for the Personalization portlet exercise
- Install Personalization sample and database
- Create the jsp file in Rational Application Developer
- Create the Personalization content resource classes and content spot
- Create the Personalization user resource classes and content spot
- Finish coding the portlet JSP
- Export the WAR file and install the portlet
- Import Personalization Workspace resource collections
- Create a simple content rule
- Create a content spot
- Enhance the Personalized Portlet
- Insert Dynamic table.html/jsp code
- Modify resource collection properties
- Create the user profiler rule
- Create additional advanced rules
- Change content spot rule mapping
- Personalization List Portlet
- Uninstall Personalization sample