WebSphere eXtreme Scale Product Overview >
Availability
With high availability, WebSphere eXtreme Scale provides reliable data redundancy and detection of failures.
WebSphere eXtreme Scale self-organizes grids of Java™ virtual machines into a loosely federated tree, with the catalog service at the root and core groups holding containers at the leaves of the tree. See the Architecture and topology topic for more information.
Each core group is automatically created by the catalog service into groups of about 20 servers. The core group members provide health monitoring for other members of the group. Also, each core group elects a member to be the leader for communicating group information to the catalog service. Limiting the core group size allows for good health monitoring and a highly scalable environment.
In a WebSphere Application Server environment, in which core group size can be altered, eXtreme Scale does not support more than 50 members per core group.
Failures
There are several ways that a process can fail. The process could fail because some resource limit was reached, such as maximum heap size, or some process control logic terminated a process. The operating system could fail, causing all of the processes running on the system to be lost. Hardware can fail, though less frequently, like the network interface card (NIC), causing the operating system to be disconnected from the network. Many more points of failure can occur, causing the process to be unavailable. In this context, all of these failures can be categorized into one of two types: process failure and loss of connectivity.
Process failure
WebSphere eXtreme Scale reacts to process failures very quickly. When a process fails, the operating system is responsible for cleaning up any left over resources that the process was using. This cleanup includes port allocation and connectivity. When a process fails, a signal is sent over the connections that were being used by that process to close each connection. With these signals, a process failure can be instantly detected by any other process that is connected to the failed process.
Loss of connectivity
Loss of connectivity occurs when the operating system becomes disconnected. As a result, the operating system cannot send signals to other processes. There are several reasons that loss of connectivity can occur, but they can be split into two categories: host failure and islanding.
Host failureIf the machine is unplugged from the power outlet, then it is gone instantly.
IslandingThis scenario presents the most complicated failure condition for software to handle correctly because the process is presumed to be unavailable, though it is not. Essentially, a server or other process appears to the system to have failed while it is actually running properly.
eXtreme Scale container failure
Container failures are generally discovered by peer containers through the core group mechanism. When a container or set of containers fails, the catalog service migrates the shards that were hosted on that container or containers. The catalog service looks for a synchronous replica first before migrating to an asynchronous replica. After the primary shards are migrated to new host containers, the catalog service looks for new host containers for the replicas that are now missing.
Container islanding - The catalog service migrates shards off of containers when the container is discovered to be unavailable. If those containers then become available, the catalog service considers the containers eligible for placement just like in the normal startup flow.
Container failover detection latencyFailures can be categorized into soft and hard failures. Soft failures are typically caused when a process fails. Such failures are detected by the operating system, which can recover used resources, such as network sockets, very quickly. Typical failure detection for soft failures is less than one second. Hard failures may take up to 200 seconds to detect using the default heart beat tuning. Such failures include: physical machine crashes, network cable disconnects or operating system failures. Thus, eXtreme Scale must rely on heart beating to detect hard failures which can be configured. See Failover detection types for details on lowering the time it takes to detect a hard failure.
Catalog service failure
Because the catalog service grid is an eXtreme Scale grid, it also uses the core grouping mechanism in the same way as the container failure process. The primary difference is that the catalog service grid uses a peer election process for defining the primary shard instead of the catalog service algorithm that is used for the containers.
Note that the placement service and the core grouping service are one-of-N services, but the location service and administration run everywhere. The placement service and core grouping service are singletons because they are responsible for laying out the system. The location service and administration are read-only services and exist everywhere to provide scalability.
The catalog service uses replication to make itself fault tolerant. If a catalog service process fails, then the service should restart to restore the system to the desired level of availability. If all of the processes that are hosting the catalog service fail, eXtreme Scale has a loss of critical data. This failure results in a required restart of all the containers. Because the catalog service can run on many processes, this failure is an unlikely event. However, if you are running all of the processes on a single box, within a single blade chassis, or from a single network switch, a failure is more likely to occur. Try to remove common failure modes from boxes that are hosting the catalog service to reduce the possibility of failure.
Multiple container failures
A replica is never placed in the same process as its primary because if the process is lost, it would result in a loss of both the primary and the replica. The deployment policy defines a development mode boolean attribute that the catalog service uses to determine whether a replica can be placed on the same machine as a primary. In a development environment on a single machine, you might want to have two containers and replicate between them. However, in production, using a single machine is insufficient because loss of that host results in the loss of both containers. To change between development mode on a single machine and a production mode with multiple machines, disable development mode in the deployment policy configuration file.
- Replication for availability
Replication provides fault tolerance and increases performance for a distributed eXtreme Scale topology.- Use JMS to distribute transaction changes
Use Java Message Service (JMS) for distributed transaction changes between different tiers or in environments on mixed platforms.