
Creating a JSR 168 portlet for use by diverse portals
using Web Services for Remote Portlets
Part 1: Creating the portlet using multiple methodologies

Karl Bishop, Senior Software Engineer, IBM
Ron Lynn, Senior Software Engineer, IBM

October, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.

In this two part adventure, you walk the path of creating a portlet using the JSR 168
specification. You also see how to access a database from the portlet using SQL. With a
twist of plot in part 2, you make this portlet available to other portals through Web
Services for Remote Portlets (WSRP). Finally, you see how to access the portlet in a
portal running under IBM WebSphere Portal Version 5. 1 (hereafter called
WebSphere Portal).

For every adventure or job that needs doing, certain tools come in handy; whether axe or
rope, all have their uses. For our purpose, we use Rational Software Architect Version
6.0 for portlet development. You could just as easily use Rational Application Developer
V6.0. Or, if you prefer, you could use your favorite text editor. This tutorial includes
instructions for using both the Rational toolset and command line tools.

The intention of the first part of this escapade is to illuminate the novice portlet developer
in the use of the JSR 168 API. In the second part, we reveal the beauty of WSRP.

This guided adventure is for any stout adventurer with beginner level Java programming
experience who might also have some familiarity with portlets and portals. We have kept
the assumptions about portal development to a minimum.

Introduction ... 2
First steps upon the road.. 3
The Rational IDE path... 4

Starting out .. 4
Building the portlet.. 9

The command line path ... 11
Starting out .. 11
Building the portlet.. 12

Installing the portlet: the road forks again ... 12
Using the WebSphere Portal administrator's GUI .. 12
Using xmlAccess... 14
Bonus path: Using the Rational IDE.. 16

Deploying the portlet to a page ... 17
Finishing the portlet .. 19
Updating the portlet... 24

Using the GUI ... 25
Using xmlAccess... 27

Working with databases .. 27
Creating a sample database ... 27
Connecting to the database.. 27
Removing database access .. 28
Making a data source for the sample database.. 28

Accessing the Admin server.. 28
Setting up a data source... 29
Creating the JDBC provider.. 30
Creating the data source .. 31

Conclusion... 33
Resources .. 33
Download .. 33
About the authors .. 34

Introduction
Noble adventurer, we see you’ve made it past the abstract to the body of this little
adventure. You are a stout and steadfast individual to have made it this far. It is our
purpose to usher you through the creation of an SQL query portlet made from the raw
ingredients of the JSR 168 API. The issuance of ad hoc SQL queries is a key ingredient
in many a portlet development foray. We will lay out all the steps and code needed for
this portlet in order to assure your success in this task.

After you have toiled in creation, you will exhibit your creation in two venues (part 2 of
this series): the first being the host portal in which you install the portlet, and the second
being the client of a WSRP facsimile of the portlet. We do hope you enjoy and find
educational the following.

First steps upon the road
No matter how you choose to build your portlet, the end result will be the same. The
environment in which you build should match your own personal taste in development.

Traditionally, we have developed portlets using emacs and command line tools for
building, testing, and packaging. Within the last year or so, our group standardized on
Rational Software Architect (hereafter called Architect) or Rational Application
Developer (hereafter called Application Developer). The transition from command line
to an Integrated Development Environment (IDE) wasn’t always easy, but we must admit
that the Rational toolset is very powerful, and we are very pleased with the results of our
transition.

All that said, we do not want to focus on the tooling used, but rather on what we are
building. We will give you the information needed to be successful for either
environment. To that end, we pause here to consider the road ahead.

"Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that, the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
two roads diverged in a wood, and I --
I took the one less traveled by,
And that has made all the difference."

Robert Frost

You start the journey with a fork in the road. Unlike Robert Frost’s traveler you have the
opportunity to take both paths, should you so desire.

Fork A Fork B
The first path leads to bright lights and From the other path emanates the musty

shiny GUIs with all the bells and whistles
which whisk you away to your destination.
The Rational toolset path will get you there
in style for a moderate investment in
learning something new.

smell of aging paper manuals and leads one
to the venerable, well worn, and
comfortable command line, which,
although less used today, can still get you
to your destination.

The Rational IDE path
Nothing like pulling a new toy from is crinkling packaging with the smell of fresh
injection molded plastic. Well, as long as there aren’t too many of those frustrating twist
ties holding the toy in. For us, there were a few of those twist ties, but they were
overcome with time and now we have made the Rational IDE a comfortable working
environment. Since you have chosen to walk this path, we expect that you have some
level of comfort in the Rational IDE (either with Architect or Application Developer).
You should know how to change perspectives, and be able to get around enough to open
files for editing and such.

Starting out
You start with creating a new project in your chosen Rational IDE using the Portlet
Project wizard for JSR 168 portlets. This wizard guides you through adding various
options you could set for your portlet. It generates a skeleton of the portlet that you fill in.
The neat part about this is that the skeleton is a working portlet, so that you can deploy it
into a portal and play with it.

1. In your chosen Rational IDE, select File => New => Project.
2. Verify that the Show All Wizards checkbox is checked.
3. Expand the Portal folder.
4. Select Portlet Project (JSR 168).

5. Click the Next button.
6. If asked if you would like to enable the Portal Development capability, click OK.
7. Type the name of the project in the Name field: SQL Query Sample

The name is used to create a directory for your portlet project.
8. Click Next.

9. On the Portlet Type page of the Wizard, select the Basic Portlet (JSR 168) portlet

type. This option creates base Java code and JSPs for the portlet.
10. Click Next.
11. On the Features page, select only the JSP Standard Tag Library. You might not

use it, but if you do need it you will have it available.

12. Click Next.
13. On the Portlet Settings page, change the Package prefix and Class prefix elements in

Code generation. Strictly speaking, you don't have to do this but, at the very least, we
recommend you make the Package prefix something that is uniquely yours. In this
case, we set the Package prefix to com.ibm.portlets.sample and the Class prefix
to SQLQuery.

14. Click Next or click Finish.

For this exercise, you do not need to change any of the other defaults or to enable any
other options past this screen. If you choose to click through the rest of the wizard
screens, you see other options and features that you can enable. For this tutorial,
please take the defaults.

15. After you click Finish, the Rational IDE generates your starter project and code. If
you are asked to change perspective to the Web perspective, click Yes.

After the project is created, it opens the SQLQueryView.jsp file for editing. You need to
rewrite the SQLQueryView.jsp to look like the following. So, switch to the Source view
of the JSP, and replace what is there with the code in Listing 1.

Listing 1. SQLQueryView.jsp revised coding

<%@ page session="false" contentType="text/html" %>
<%@ page import="java.util.*,javax.portlet.*,com.ibm.portlets.sample.*"
%>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<%
SQLQuerySessionBean sessionBean = (SQLQuerySessionBean)
renderRequest.getPortletSession().getAttribute(SQLQuery.SESSION_BEAN);
String formText = sessionBean.getFormText();
%>

<h3 style="margin-bottom: 3px">SQL Query</h3>

<div style="margin: 12px; margin-bottom: 36px">
<form method="POST" action="<portlet:actionURL/>">

<label for="<%=SQLQuery.FORM_TEXT%>">Enter SQL query:
</label>

<textarea rows="5" cols="40"

name="<%=SQLQuery.FORM_TEXT%>"><%=formText%>
</textarea>

<input name="<%=SQLQuery.FORM_SUBMIT%>" type="submit"

value="Submit" />
</form>

</div>

Now you have a JSP that will display a single text area and a button. The user types his or
her query into the text area and then clicks the button to submit the query. At this point
you are using the pre-created session bean and portlet code. You could build and run it
and you will have a portlet which remembers the query and displays it back to the user in
the text area.

For new portlet developers, this is one of the most wonderful aspects of using the
Rational tools; you don’t have to start from a blank sheet of paper. Rather like a coloring
book, you are given an outline which you can fill in. The outline itself is complete, but
your embellishments make it so much more than how it started. You will finish filling in
the portlet and building the results display a little later, but for now, let’s learn how to
build this skeleton portlet.

Building the portlet
Compiling and packaging the portlet for deployment is a simple feat when you use the
Rational environment. To review a basic portlet concept, portlets are packaged into Web
Archive files, or WAR files, which are deployed into the portal, and then laid out on
portal pages.

To build the portlet:

1. Switch to the Web perspective (if you’re not already in it).
2. Right click the project under Dynamic Web Project, called SQL Query Sample.
3. Select Export => WAR file.

4. Select a Destination and name for the WAR. For example:
c:\cygwin\home\tcat\work\SQLQuerySample.war

5. Optionally, check the Overwrite existing file checkbox. If you don’t do this you need
to choose a unique name for your WAR file.

6. Click Finish.

You now have a deployable portlet! The next step is to deploy it so you can test it out. If
you’re on the Rational path, please skip ahead to Installing the portlet.

The command line path
We do enjoy settling into our chairs, stretching our fingers out and putting them to well
worn keys. It is a comfortable place to be and one that we are quite familiar with. To be
able to build the sample portlet from the command line, you need a directory structure to
put the code into, a JDK, a text editor, and a JAR file from your WebSphere Portal
installation. We always try to use the same JDK that the portal is using. This keeps us
from straying to the use of features in newer JDKs.

Starting out
1. Download the code for this portlet so you don't have to type everything.
2. Extract the contents, maintaining the directory structure to see what is where.

You see the Java code in the JavaSource directory and JSPs in the WebContent
directory, along with the portlet.xml and web.xml files.

3. Notice that there are two JAR files in the WebContent/WEB-INF/lib directory. These
are for JSTL, in case you want to play with it. We don't use JSTL in this tutorial, but
you would probably want to use it in a real application, instead of Java scriptlets in
the JSP code.

Building the portlet
To build the portlet from the command line:

1. Get to the JavaSource directory, and compiling the source code using this command:

javac –cp <pathToJAR>/portlet.jar com/ibm/portlets/sample/*.java

2. Copy the class files to the corresponding directory under WebContent:

WebContent/WEB-INF/classes/com/ibm/portlets/sample

You could, of course, create a JAR file from the class files and put it into the
WebContent/WEB-INF/lib directory instead. You could also use a script, Ant, or
Maven to do these build steps.

3. Let’s go ahead and build the WAR file. Change directory to the WebContent
directory and create the WAR file.

cd WebContent
jar -cvf ../SQLQuerySample.war *

The result is a WAR file ready for deployment. Continue with the next step to install and
deploy the portlet.

Installing the portlet: the road forks again
There are multiple ways to deploy portlets:
• Using the WebSphere Portal GUI
• Using an xmlAccess script
• Using the Rational IDE tools
We’ll walk through them all, and you can choose which suits you and your environment.

Using the WebSphere Portal administrator's GUI

1. Log onto your portal as an administrator. This is most easily accomplished by going

to http://<portal.server.name>/wps/myportal. Type the User ID and
Password, then click the Log in button at the bottom. (The default portal
administrator user ID is wpsadmin.)

2. Click the Administration link. So, where is this link? That is part of the adventure

of portal. The Administration link placement is completely theme dependent. In the
case of the default themes, it should be fairly obvious and is usually included as one
of the page tabs. If you’re working from a theme developed elsewhere and can’t find
it, ask your portal administrator. (Some sites hide the Administration link behind an
icon.)

3. In Portal Administration, click Portlet Management => Web Modules.
4. Click the Install button.

5. Click Browse and locate the WAR file you created, or type in the complete path to it.

6. Click Next.

7. Verify that you’ve chosen to install the correct WAR.
8. Click Finish . You should see a success message like this:

Using xmlAccess
To use xmlAccess to install the portlet, you need to write an xmlAccess script to install
our portlet. (You can use the same script later in this tutorial to update the portlet.)

The xmlAccess script you need to use to install the portlet looks like the code in Listing
2.

Listing 2. xmlAccess script to install the portlet

<?xml version="1.0" encoding="UTF-8"?>
<request

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="PortalConfig_1.2.xsd"
type="update"
create-oids="true">
<portal action="locate">

<web-app action="update" active="true"
uid="com.ibm.portlets.sample.SQLQuery.778f228960.webmod">
<url>file:///tmp/SQLQuerySample.war</url>
<servlet action="update" active="true"

referenceid="SQL Query Sample.servlet"/>
<portlet-app action="update" active="true"

uid="com.ibm.portlets.sample.SQLQuery.778f228960">
<portlet action="update" active="true"

name="SQL Query Sample" />
</portlet-app>

</web-app>
</portal>

</request>

We say “looks like” because we can’t predict what your unique identifiers (UIDs) will
be. The unique identifier com.ibm.portlets.sample.SQLQuery.778f228960, appears
in two places. The Portlet wizard places this unique identifier into the portlet.xml file
for you. If you hand-coded portlet.xml, you need to map the uid attribute from the
portlet-app element in that file to the uid attribute of the portlet-app and web-app
elements in the xmlAccess script.

1. Next, change the url element of the script so it point it to the location of the WAR file

you created earlier. For example, on our Linux machine, it is in /tmp. Specify the
proper path in for your environment.

2. Once you have written this little script, save the file as updateSQL.xml.

Next, you run the script to install the portlet. To run the script, you need to know where
your portal bin directory is installed. On our Linux machine it’s under
/opt/IBM/WebSphere/PortalServer/. On a Windows machine it might be under
c:\WebSphere\PortalServer\.

./xmlaccess.sh -in <xmlAccess script name with path> -user wpsadmin -
pwd <yourPassword> -url <WP server>:9081/wps/config

The script is a .bat file in Windows. If you copy the xmlAccess script into the bin
directory, you can use this command to install the portlet:

./xmlaccess.sh –in updateSQL.xml -user wpsadmin -pwd i’mnottelling -
url localhost:9081/wps/config

If this all works as planned, you see status messages scrolling by, and finally one that
says:

<status element="all" result="ok"/>

So, what if things don’t go as planned? Start with reading the error message carefully.
They can be somewhat cryptic, but they can help. When in doubt, the first place to look is
the xmlAccess script we just wrote by hand:
•
•
•

Are all the XML tags closed?
Do the UIDs match what’s in the portlet.xml?
Is the path to the WAR file correct?

It could be that the xmlAccess script is fine, but something is wrong with your WAR file.
You could try installing the portlet using the GUI or using the Rational interface. If that
works, you have eliminated the WAR as being part of the problem.

Bonus path: Using the Rational IDE
Some may take the road less traveled, but when you really need to get somewhere fast,
take the easiest route. For those of you using the Rational IDE, the third option for
deploying portlets is to let the Rational tools do it for you.

To enable the Rational IDE to work its magic, you simply tell it the basics of the server
environment you wish to deploy to, and then it's a matter of a few clicks to deployment
nirvana.

First, right-click on your portlet project, and select Deploy Portlet.

The first time you travel this path, you need to create a deployment server definition.

1. Click on New... to create a server using the Wizard.

When we developed this exercise, the WebSphere Portal server was on our local
Linux machine, so we selected localhost as the server's host name. For remote
servers or custom installations, you need to adjust these settings to match your
environment. There are many options to choose from when defining a deployment
server (which might stray us off our immediate path). The Rational help has
many more details for your reading enjoyment.

2. Define a New Server.

a. Host Name: localhost
b. Server Type: WebSphere Portal v5.1 for Import, Export, and Deploy

3. Click Next.
4. WebSphere Portal Settings. Define the settings for your environment. If you

performed a standard WebSphere Portal installation, you can keep most of the
defaults. Otherwise, you need to update the settings to match your system.

•
•
•
•
•
•

•

•

•

Server HTTP port: 9081
Base URI: /wps
Default Page: /portal
Personalized home page: /myportal
Install location: {Enter your Portal Server install location}
WP Admin User ID: {Enter your WebSphere Portal administrator's user
ID}
WP Admin Password: {Enter your WebSphere Portal administrator's
password}

5. Publishing settings:
Transfer Method:
For locally hosted server, select Local Copy.
For remote servers, select FTP.
Web Application: {Enter the location of the installed wps.ear file on
your WebSphere Application Server installation}
For example:
/opt/IBM/WebSphere/AppServer/installedApps/<node>/wps.ear

• Library:{Enter the location of the portal's shared apps directory}
For example:
/opt/IBM/WebSphere/PortalServer/shared/app

6. Add Remove Projects.
Select the Portlet project EAR(s) or sub-projects that you want to be deployable
on this server. For this example you simply select our single SQL project's EAR
and add it to the Configured projects area.

7. Click Finish to complete the server definition.

Now that your server is defined, you can deploy the portlet to it.

1. Select Server:
Portlet Project: Select the project you wish to deploy.
Server to use: Select the server you just defined (WebSphere Portal V5.1 for
Import, Export, and Deploy @ localhost)

2. Portlets:
The only item you typically want to select on this page is the checkbox to
automatically overwrite portlets. (Even if you don't set it, you are prompted if you
want to overwrite the existing portlets anyway.) One other option to consider is if
you want to simply update the potentially existing portlets, or if you want to
Remove and Deploy them. Typically, you want to simply do an Update. The
only reason we can think of for wanting to do a remove/deploy is if you had made
changes to the init parameters and wanted to test them out. If you elect to do this,
you need to re-add the portlets on the pages again.

A few seconds later, your portlets are deployed on the server. It’s really quick and
simple. Let's not even call this a path. Let’s think of it more like a deployment moving
side-walk, like you find at an airport.

Deploying the portlet to a page
There are two paths you could take to deploy a portlet on a page. Because you only need
to deploy it once, and then you can just update the portlet, we present the graphical
method. If you’d like to use xmlAccess for portlet deployment, then we suggest you
feast your eyes upon the InfoCenter. See the section which explains xmlAccess and
provides samples for you to devour.

1. If you are not already logged onto your default portal running under WebSphere
Portal, log on now as an administrator: For example, log on here as wpsadmin:
http://<portal.server.name>/wps/myportal

2. In portal administration, click the Administration link.
3. Click Portal User Interface => Manage Pages.
4. Click the My Portal link.
5. Find the page you’d like to deploy your portlet to or create a new page.

For this exercise, you could use the Welcome page.

6. Click the Edit Page Layout icon ().
7. Click an Add Portlets button. There could be several on the page so pick one

where you’d like the portlet to be displayed.
8. Find our portlet. The easiest way is to do that is:

a. Select Search by: Title starts with
b. In the Search: field, enter SQL, and then click the Search button. Of course, if
you named your portlet something other than SQL, enter that name in the Search
field instead.

9. Click the Select checkbox next to the portlet you’d like to place on the page, and

then click OK.

10. Click Done.
11. After the portlet is deployed to a page, you can go play with it!

The portlet doesn’t do a whole lot at this point, but you do have a portlet that it working
on the page. It stores a query in the session and puts it back in the text area for the user to

see. This is all the code necessary for user interaction. The next step is to finish the
portlet by adding some code to implement the query and render the results.

Finishing the portlet
To finish this portlet, you add the query logic and some code to display results. We’ve
included all the code in the download. If you have not already downloaded this code, do
that now. For those of you following the Rational path, you could replace what the
wizard produced with the modules in the download, so that we’re all on the same page in
the rest of the discussion. What we’ve provided is complete, and it will save you some
typing. It’s pretty straight-forward, although we changed some of the default code that
Portlet wizard produced to make it a little easier to follow. We have commented the code
liberally to clarify its intention.

The display code shows only the first 10 rows of data returned from the Select statement.
You might want to add pagination through the result set, code to provide an option to
update the data, and provide a way of switching to a different data source. The purpose of
this tutorial, however, is to walk through creating a complete application, without all the
extras. So, we stick to creating a simple portlet that is complete enough to give you a feel
for JSR 168, and one that will let you do something useful.

Start with updating the doView method of the portlet. You call a new method, runQuery,
and pass in the RenderRequest and the SQLQuerySessionBean.

Listing 3. The doView Method

public void doView(RenderRequest request,

RenderResponse response)
throws PortletException, IOException {
// Set the MIME type for the render response
response.setContentType(request.getResponseContentType());

// Check if portlet session exists
SQLQuerySessionBean sessionBean = getSessionBean(request);
if(null == sessionBean) {

response.getWriter().println(
"NO PORTLET SESSION YET");

return;
}
//issue the query
runQuery(request, sessionBean);

// Invoke the JSP to render
PortletRequestDispatcher rd =

getPortletContext().getRequestDispatcher(VIEW_JSP);
rd.include(request,response);

}

We simplified the call to the request dispatcher somewhat. You don’t have to do this; the
generated code is fine. It saves a few lines of finger exercises for those who choose the
non-GUI path for development.

If you have written portlets to the IBM API (versus the JSR 168 Portlet Specification),
you might notice a difference in program flow. In the IBM API, you would normally run
queries and such in the event processing phase (it’s called the action phase in JSR 168
parlance) of the portlet−not in the render phase. In JSR 168 portlets, this isn’t possible to
do. So, we move this processing to the render phase. The idea is that such calculations
could be done and optimized better during the render phase. So, if this were a long
running query in a real application, you might want to cache the results for later retrieval.
Likewise, if we were going to implement pagination, you might want to cache results to
speed up subsequent calls to doView.

Ok, you with the scraggly beard mumbling in the back. We heard your question. For
those of you who didn’t hear it, he said, “Why can’t we do this processing in the action
phase?” Yes, we see those nods of agreement and hear the rattling of swords. It’s a good
question. The signature of the doView method and the processAction method take in
different request objects. The doView method uses the RenderRequest and the
processAction method uses the ActionRequest. Attributes set in one are not propagated
to the other. So, what the API is whispering to us is that actions should change the state
of the portlet. Things which you would store in the session or other longer-lived places
should be processed in processAction. Anything needed to render the portlet, such as the
results of a query, should happen in doView. Optimization should be applied where
appropriate; for example caching query results. Make a little more sense now?

So, what does runQuery do? It simply runs the query that is stored in the session bean,
and stores some of the results in the RenderRequest for the JSP to render. Nothing very
fancy, but it is something that you may find yourself needing to do in some
circumstances.

Listing 4. The runQuery method

private void runQuery(RenderRequest request,

SQLQuerySessionBean bean) {
//-- do a sanity check!
String sql = bean.getFormText();
if((null == sql) || "".equals(sql.trim())){

return;
}
//-- Get our datasource
setError(request, null);

Connection con = null;
Statement stmt = null;
ResultSet rs = null;

try {

//-- get our query and validate it's a select
if (!sql.toUpperCase().startsWith("SELECT ")) {

setError(request, "Invalid SQL Select statement: " + sql);
return;

}

//-- initialize our datasource
if(null == datasource){

datasource = getDataSource(DATASOURCE_NAME);
}

//-- Run our Query if SQL is set.
// Get connection
con = datasource.getConnection();
stmt = con.createStatement();
rs = stmt.executeQuery(sql);
setResults(request, rs);

} catch(NamingException ne) {
setError(request, "DataSource NOT FOUND!");
return;

} catch (SQLException se) {
setError(request, "Error on SQL: " + se);

} catch (Exception e) {
setError(request, "Unknown Error: " + e + "\n");

} finally {
try {

if (rs != null){ rs.close(); }
if (stmt != null){ stmt.close(); }
if (con != null){ con.close(); }

} catch (Exception e) {}
}

}

So, not much magic happening here. We test the parameters, and then grab the data
source. We hard coded the name of the data source in the Java code in this example. Of
course, this is not a best practice, and in real applications we would externalize the data
source in a way that makes sense. For example, you could put it in a properties file, make
it an editable property, make it user set-able, make a list of possible data sources with
user friendly descriptions, and let the user select the data source. However, for the sake
of simplicity in this wee sample, we just set it in the code:

public static final String DATASOURCE_NAME = "jdbc/MySampleDS";

When you’re out there on your system playing with this portlet, you need to point the
data source toward one of your own databases. If you don’t know how to do this, see the
section at end of this tutorial called Working with databases. It provides a brief overview
of creating a database, importing some data, and creating the data source in WebSphere
Application Server. Listing 5 shows how to initialize the data source:

Listing 5. Initializing the data source
protected DataSource getDataSource(String dsname)

throws NamingException{

DataSource ds = null;
Context context = new InitialContext();
ds = (DataSource)context.lookup(dsname);
return ds;

}

If you’ve worked with data sources before, you have probably seen this sort of code over
and over: look up the data source and return it.

The next step is to implement the query and store the results using setResults. And, lastly
we clean up the connection and such. We do try to trap some errors which will get
shown to the user. The setResults method simply places the results into the
RenderRequest for the JSP to pick up and use. The setResults method simply calls two
other methods, setHeaders and setRows. The setHeaders method iterates through the
results and creates a list to display to the user.

Listing 6. The setHeaders method
private void setHeaders(RenderRequest request, ResultSet rs)

throws SQLException {

ResultSetMetaData meta = rs.getMetaData();
int columns = meta.getColumnCount();
ArrayList headers = new ArrayList(columns+1);
headers.add(" ");
for(int i = 1; i <= columns; i++){
headers.add(meta.getColumnName(i));

}
request.setAttribute("HEADERS", headers);

}

Yes, Larac, we could have used column labels instead of column names, and it would
have been more user-friendly. We didn’t; we used column names, and I’m sorry. (For
those of you who are wondering, Larac is the UCD devil, I mean angel, who sits on my
shoulder and usually talks sense into us. However, what she doesn’t know is that there is
method to our madness!) We used the column names so that users might have a better
idea which columns they can use to limit their selections. A trivial detail, but as you can
see we added a list of headers to the RenderRequest so that we can let the users know
what columns they selected. Let’s look at how we store the rows we’ve selected.

Listing 7. The setRows method stores the selected rows
private void setRows(RenderRequest request, ResultSet rs)
throws SQLException {
//generate 10 rows of data if that much exists
ResultSetMetaData meta = rs.getMetaData();
int columns = meta.getColumnCount();
ArrayList rows = new ArrayList(10);
int rowNumber = 1;
while(rs.next() && (rowNumber <= 10)){
ArrayList row = new ArrayList(columns+1);
row.add(new Integer(rowNumber));
for(int i = 1; i <= columns; i++){

Object o = rs.getObject(i);
if(null == o){

row.add("null");
}else{

row.add(o);
}

}

rowNumber++;
rows.add(row);

}
request.setAttribute("ROWS", rows);

}

We use the same idea here as we did for the headers We created an ArrayList in which to
store the rows, and each row is an ArrayList. We restrict the number of rows shown to
ten, and then make the data structure available to the JSP as a RenderRequest attribute.
Again, in a real application we would cache these results as an optimization so that we
could page through them or let future users access them.

Let’s finish off our pretty picture of Java code with a little bit of reality. If we happen
upon errors, we set them in the RenderRequest, and render them with the JSP for the user
to see.

Listing 8. Rendering errors

public void setError(RenderRequest request, String error) {

if(null == error){
//reset the error buffer
request.removeAttribute("ERRORS");
return;

}
StringBuffer errors = (StringBuffer)

request.getAttribute("ERRORS");
if(null == errors){

//initialize the error buffer
request.setAttribute("ERRORS", new StringBuffer(error));

}else{
errors.append("
\n");
errors.append(error);

}
}

This reasonably simple code strings the error messages together and put them into the
RenderRequest for the JSP to handle. The JSP pulls the ERRORS string from the request
and prints it out at the bottom of the page. We did not use JSTL (JSP Standard Template
Libraries) in the JSP, although they would have made several things easier. Listing 9
shows only what’s been added to the JSP; for the full version see the download.

Listing 9. The JSP code handles the display of data and errors

<%
ArrayList headers = (ArrayList)request.getAttribute("HEADERS");
ArrayList rows = (ArrayList)request.getAttribute("ROWS");
if((null != headers) || (null != rows)){
%>
<table cellspacing="0" cellpadding="3" border="1">
<%

if(null != headers){
%>

<tr>
<%

Iterator colIter = headers.iterator();
while(colIter.hasNext()){

%>
<th><%= colIter.next().toString() %></th>
<%

}
%>
</tr>
<%

}
%>
<%

if(null != rows){
Iterator iter = rows.iterator();
while(iter.hasNext()){

ArrayList row = (ArrayList)iter.next();
%>
<tr>
<%

Iterator colIter = row.iterator();
while(colIter.hasNext()){

%>
<td><%= colIter.next().toString() %></td>
<%

}
%>
</tr>
<%

}
}

%>
</table>
<%
}
%>
<%
StringBuffer errors = (StringBuffer)request.getAttribute("ERRORS");
if(null != errors){

%><h3>Errors:</h3><%=errors%><%
}
%>
</div>

All we did was add this to the bottom of the original JSP. We think it’s exactly what one
would expect given the data structure we created in the Java code. We simple build a
table of the results, and then print out any errors that might have occurred.

Updating the portlet
Updating the portlet is very similar to installing it, and in the case of the command line
XML interface it’s exactly the same. Updating makes a portlet deployed on a page
unavailable to users while it is being updated, and invalidate the user’s session for that

portlet. So, if you’re doing this on a production system, you must be aware that your
users will suffer a small inconvenience.

Using the GUI
Updating the portlet in the GUI is similar to installing the portlet in the GUI.

1. Log onto your portal as an administrator.
2. Click the Administration link.
3. Click Portlet Management => Web Modules.
4. Search for your installed WAR file.

5. Once you’ve found your portlet, click the update button ().
6. Use the Browse button to find your WAR file.
7. Click Next. The file is transferred to the server and the portlet.xml file parsed. When

that’s done you will see what’s in the WAR.
8. Click Finish.

9. You should see a success page.

10. Then, you can go play with your new SQL query portlet! Go ahead and try a
couple of selects. For example, you could try something like this:
select * from cats
or
select * from digits
or
select id, value from digits where catsid=5

The following figure shows results displayed when you enter select * from cats.

Using xmlAccess
Updating the portlet with xmlAccess is a breeze. You simply need to rerun the
xmlAccess install script that we described in Installing the portlet, Using xmlAccess.

Working with databases
This section provides a quick overview of working with databases, in case this is a new
experience for you. This discussion is about IBM DB2; your experience may vary if
you’re using a different database system. If in doubt, consult with your database
administrator about your specific installation.

Creating a sample database
The first thing you need to do is to create the database. You must know the database
instance user, or at least a user that has privileges to create databases. If DB2 has been set
up in the default manner, then on Linux the instance user is db2inst1. Log on as that user
or su – dbstinst1 to it. If you’re on Windows, get to a command window.
Start=> All Programs=> IBM DB2=> Command Line Tools=> Command Window

No matter what your platform happens to be, the form of the database creation statement
is the same:

db2 create database mysample

You should see a success message:
DB20000I The CREATE DATABASE command completed successfully.

If you don’t, well, you might not have the necessary privileges to create a database, or
your DB2 environment might not be properly initialized.

Connecting to the database
The next step is to connect to the database so that you can create some tables.

db2 connect to mysample

You should see confirmation that you are connected to the database. For example:

Database Connection Information

Database server = DB2/LINUX 8.2.1
SQL authorization ID = DB2INST1
Local database alias = MYSAMPLE

Finally, in the download is a file, MySampleTable.sql, which you can use to create the
mysample database and insert a bit of data. You run this file using this command:

db2 +o –tvf MySampleTable.sql –z OutFile.txt

Two tables are created: one named cats and one named digits. At the end of
MySampleTable.sql, a couple of Select statements verify that the tables were created and
that the data was inserted into them properly. If you take a look at OutFile.txt you
should see output from those selects at the end.

You could also run these Select statements from the command line. Go ahead and try
them:

$ db2 “select * from cats”

or

$ db2 “select * from digits”

If this doesn’t work, you have to go back and debug what went wrong. When everything
looks good, reset the database connection.

$ db2 connect reset

Removing database access
Before we move on, when you are finished playing with this tutorial, portlet, and
database you might want to clean up after yourself. To do that you need to issue:

$ db2 drop database mysample

You have to make sure there are not outstanding connections to it and such so if you’ve
created a datasource to the database, you should remove the portlet, delete the datasource,
and the drop the database.

Now that you have the basics, you can move on to making the database available to your
code as a datasource.

Making a data source for the sample database
There are a couple of different ways to create a data source for your new database. We
show you the graphical way through the Web interface.

Accessing the Admin server
Before you can look at the pretty Web interface, you need to start up the admin server,
server1.

1. Log in to your WebSphere Application Server machine.
2. Get to the application server bin directory. On our Linux machine it is:

/opt/IBM/WebSphere/AppServer/bin

3. Make sure you log in as someone who can start and stop application servers. In the
case of Linux, by default the root user is who you need to be.

4. In the bin directory, run the command to start the server:

./startServer.sh server1

5. You should see a line eventually that tells you that the server is open for e-business.

ADMU3000I: Server server1 open for e-business; process id is 27279

6. Now, you can open a Web browser to the admin server Web interface:

http://<yourServer>:9090/admin

7. Log in through the login screen.

Setting up a data source
Now you can begin setting up a data source.

1. Create the J2C Authentication. Look at the navigation bar on the left and traverse the

following:
Security => JAAS Configuration => J2C Authentication Data

2. Click New.

3. Put in the Alias information including the Alias, User ID, and password.

4. Click OK.
5. Click the Save link at the top.

6. Click the Save button.

Creating the JDBC provider

The next step is to create the JDBC provider.

1. Create the MySample JDBC provider. Look at the navigation bar on the left and

traverse the following:
Resources => JDBC Providers

2. Click the New button
3. In the JDBC Providers drop down, select DB2 Universal JDBC Driver Provider
4. Click the OK button
5. Change the name from DB2 Universal JDBC Driver Provider to MySample JDBC

Driver Provider

6. Change the following path variables to the correct path if they are not set up in your
environment:
${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar
${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar
${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar

to this (you will want to verify the path for your environment)

/opt/IBM/db2/V8.1/java/db2jcc.jar
/opt/IBM/db2/V8.1/java/db2jcc_license_cu.jar
/opt/IBM/db2/V8.1/java/db2jcc_license_cisuz.jar

7. Click the OK button.

Creating the data source
Now, you can create the data source.

1. Click the MySample JDBC Driver Provider link in the list of JDBC providers.
2. Click the Data Sources link at the bottom of the provider information.
3. Click the New button.
4. Change the name from DB2 Universal JDBC Driver DataSource to MySample

JDBC Driver DataSource.
5. Change JNDI Name to jdbc/MySampleDS.
6. Select the <servername>/SampleAlias from the Component-managed

Authentication Alias dropdown box.
7. Click the OK button.

Set up the datasource.

1. Click the MySample JDBC Driver DataSource link

2. Click the Custom Properties link at the bottom.
3. Click the databaseName link.
4. Set the databaseName to mysample.
5. Click the OK button.
6. Click the serverName link.
7. Set the serverName to the database servername.
8. Click the OK button.
9. Click the portNumber link.
10. Set the portNumber to 50001.

To find the port number for your machine, run this command on the database server:
cat /etc/services |grep db2c_db2inst1

11. Click the OK button.
12. Click the Save link at the top.
13. Click the Save button.

Finally, test the connection.

1. Look at the navigation bar on the left and traverse the following:

Resources => JDBC Providers => MySample JDBC Driver Provider
=> Data Sources

2. Click the checkbox next to MySample JDBC Driver DataSource.
3. Click the Test Connection button. If you did everything correctly you see a message

which indicates a successful test of the connection.

If not, go back and double-check all your work.

With all this work done you will probably need to restart your portal server to read in the
new data source information. After that, you should be able to get a data source for your
new sample database in the portlet code.

Conclusion
This brings us to the end of this part of our journey together. Let’s reflect a moment on
where we’ve been. We started at a fork in the road where we chose a development
environment. Then, we developed a simple portlet that accesses a database backend to let
users run SQL Select statements. We followed that up with the deployment of that
portlet into a portal using a couple of different techniques, and that brings us to where we
are now.

In the second part of this series, we continue the journey. You learn how to deploy the
portlet we developed here using the Web Services for Remote Portlets (WSRP) protocol.
Keep an eye out for it here on the developerWorks Portal Zone! Until then, remember
these words from Yogi Berra, “When you arrive at a fork in the road, take it.”

Resources
developerWorks WebSphere Portal zone
http://www.ibm.com/developerworks/websphere/zones/portal/

WebSphere Portal product documentation
http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html

Rational Application Developer V6 trial software
http://www.ibm.com/developerworks/downloads/r/rad/?S_TACT=105AGX10&S_CMP=ART

Rational Application Developer for WebSphere Software technical resources
http://www.ibm.com/developerworks/rational/products/rad/

Download
To get the download file, see the cover page for this tutorial, at:
https://www6.software.ibm.com/developerworks/education/websphere/0510_lynn/0510_lynn.html

The download includes:
SQLQuerySample.war Source and deployable WAR file packaging of the Portlet.

SQLQuerySample.zip Zip file packaging of the portlet source code.

MySampleTable.sql DDL for the creation and population of a simple database.

http://www.ibm.com/developerworks/websphere/zones/portal/
http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html
http://www.ibm.com/developerworks/downloads/r/rad/?S_TACT=105AGX10&S_CMP=ART
http://www.ibm.com/developerworks/rational/products/rad/
https://www6.software.ibm.com/developerworks/education/websphere/0510_lynn/0510_lynn.html

About the authors

Karl Bishop is a Senior Software Engineer on the IBM® Web
Enablement and Support team. He works from the wilds of North
Carolina. Karl work on various internal and external portal based
application, as well as being a strong proponent of Linux based
solutions. You can reach Karl at kfbishop@us.ibm.com.

Ron Lynn is a Senior Software Engineer on the IBM® Web
Enablement and support team. He works from a small farm in the San
Joaquin Valley of central California. Ron is currently working on
internal portal projects that focus on giving more visibility to IBM's
partner applications. He has written and spoken on portlet development
and other topics numerous times and is co-author of Programming
Portlets. You can reach Ron at tcat@us.ibm.com.

	Introduction
	First steps upon the road
	The Rational IDE path
	Starting out
	Building the portlet

	The command line path
	Starting out
	Building the portlet

	Installing the portlet: the road forks again
	Using the WebSphere Portal administrator's GUI
	Using xmlAccess
	Bonus path: Using the Rational IDE

	Deploying the portlet to a page
	Finishing the portlet
	Updating the portlet
	Using the GUI
	Using xmlAccess

	Working with databases
	Creating a sample database
	Connecting to the database
	Removing database access
	Making a data source for the sample database
	Accessing the Admin server
	Setting up a data source
	Creating the JDBC provider
	Creating the data source

	Conclusion
	Resources
	Download
	About the authors

