

Implementing JSR 168 inter-portlet
communication using Rational Application
Developer V6.0 and WebSphere Portal V5.1

Level: Intermediate

Asim Saddal (mailto:asaddal@us.ibm.com)
Senior IT Specialist, IBM

14 September 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.

1 of 27

mailto:asaddal@us.ibm.com

Table of contents

Abstract ... 3
Introduction ... 3

About the sample code .. 3
Before you begin ... 4
Introducing the DemoPortlets scenario ... 4

Creating DemoPortlet1.. 9
Creating DemoPortlet2.. 10
Enabling the DemoPortlet1 as a source... 10

Describing the source with WSDL.. 10
Listing 1. WSDL for the source portlet... 13

Enabling DemoPortlet2 as target... 14
Generating the WSDL... 14
Listing 2: WSDL for target portlet .. 18

Modifying the Java Classes... 20
Modifying the JSP... 23
Deploy the DemoPortlets.war portlet.. 24
Conclusion... 26
Download .. 26
Resources .. 27
About the author.. 27

2 of 27

Abstract
This tutorial shows you how to implement JSR 168 compliant cooperative portlets
using IBM® Rational® Application Developer V6.0 and IBM WebSphere Portal V5.1.
You see how to pass multiple values from the source portlet to the target portlet,
without defining a complex data type inside a Web Services Definition (WSDL) file.

Introduction

One of the most significant advantages of the portlet architecture is the portlets'
ability to communicate with each other to create dynamic, interactive applications.
You can use portlet messages to share information, notify each other of a user’s
actions, or to simply help better manage screen real estate. Messages can be sent to
a specific portlet, to all portlets on a page, or to all portlets in a single portlet
application. In order to make full use of this potential, you need to adequately
architect the entire portlet application, anticipating inter-portlet communication.

The term cooperative portlets refers to the capability of portlets on a page to interact
with each other by sharing information. One or more cooperative portlets on a portal
page can automatically react to changes from a source portlet , triggered by an
action or event in the source portlet. Portlets that are targets of the event can react
so that users are not required to make repetitive changes or to take repititious
actions in other portlets on the page.

Cooperation between source and target portlets is facilitated by an IBM®
WebSphere® Portal runtime entity called the property broker. Portlets on a page can
cooperate in this way even if they were developed independently, without the
programmer's awareness of the existence of the other cooperative portlets.

The most important difference between portlet messaging and cooperative portlets is
that cooperative portlets are more loosely coupled than portlets using messaging.
Cooperative portlets do not have to know the name of the target portlet, even if they
do not broadcast data. The matching of source and target portlets is done at runtime
based on registered properties and actions.

During runtime, the WebSphere Portal property broker is responsible for enabling
cooperative portlets. Therefore, you can rely on the WebSphere Portal property
boker to enable the passing of complex data between portlets, without needing to
define complex data types inside the WSDL files.

JSR 168 is a specification from the Java™ Community Process for portlet
development. WebSphere Portal V5.1 provides support for the JSR 168 API. With an
IBM extension, WebSphere Portal V5.1 supports cooperative portlets for JSR 168
portlets, in which one JSR 168 portlet can communicate with another JSR 168
portlet.

About the sample code
A download accompanies this tutorial. The download includes a WAR file which
contains the two demo portlets with the source code and WSDL files. You can deploy

3 of 27

the WAR file directly into WebSphere Portal, but you need to create the wires
between them. See Deploy the DemoPortlets.war portlet for more details.

Before you begin
To work through this tutorial, you need to basic knowledge of portlet development
and deployment.

To develop and deploy the sample application, you use the following IBM products:

•
•

Rational Application Developer for Rational Software Development Platform V6.0
WebSphere Portal V5.1.x

Introducing the DemoPortlets scenario
In the DemoPortlets scenario you create two JSR 168 portlets. The DemoPortlet1
passes multiple values to the DemoPortlet2 without defining complex data type
inside Web Services Definition (WSDL) file.

DemoPortlet1, as shown in Figure 1, gets three fields of user input and then passes
these values to the target portlet, Demo2Portlet, as shown in Figure 2. DemoPortlet1
is the source portlet in this scenario.

4 of 27

Figure 1. DemoPortlet1 receives user input

5 of 27

DemoPortlet2 is the target portlet. It receives and then displays the three values
from DemoPortlet1.

Figure 2. DemoPortlet2 displaying values it received from DemoPortlet1

6 of 27

Creating a JSR 168 portlet project

To develop the application, start the Rational Application Developer (hereafter called
Application Developer).

To create the project:

1. Open the Web perspective by clicking Window => Open Perspective =>Web.

2. Click New => Other.

3. Select Portlet Project (JSR 168) from the list. The New Portlet Project (JSR

168) wizard launches, as shown in Figure 4.

Figure 3.

4. Enter DemoPortlets as the Name.

5. Clear the Create a portlet checkbox. You will create your portlets separately in

order to have better control over portlet naming conventions.

7 of 27

6. Click the Show Advanced button.

7. Select WebSphere Portal V5.1 Unit Test Environment in the Target Server list.

8. Accept defaults for the other fields.

Figure 4. New Portlet Project (JSR 168) wizard

9. Click Finish.

8 of 27

Creating DemoPortlet1
To create the first portlet:

1. In the Project Navigator view, select the DemoPortlets project.

2. Right-click to bring up the context menu, and click New => Portlet. The New

Portlet wizard launches.

3. Enter DemoPortlet1 as the Default Name prefix, and click Next.

Figure 5. New Portlet wizard

4. Accept the default values, and click Finish.

9 of 27

Creating DemoPortlet2

Create a second portlet in the same project following same steps you used for the
first portlet, but name this one DemoPortlet2.

Enabling the DemoPortlet1 as a source

JSR 168 portlets can cooperate with each other by exchanging properties using the
property broker. A WSDL file describes the publish (or send) attributes to the
property broker.

Describing the source with WSDL
To enable the DemoPortlet1 portlet as a property source:

1. Right-click the portlet in the Project Explorer view.
2. Select Cooperative => Enable Source.

Figure 6. Enabling DemoPortlet1 as source

10 of 27

In the Enable Cooperative Source wizard, enter these values, as illustrated in Figure
7:
A name for the Data type, such as IDDatatype
The Namespace for the new data type, such as http://demoportlets
What you want your parameter Bound to, such as Request attribute

Figure 7. Specifying first data item as source

The term parameter refers to how the value will be transferred from the source
portlet to the target portlet. The choices are:

None: This setting implies that you will not specify the way the value is passed, so
the default behavior for portlet

Render parameter: Supports only strings. The string value is bound to the
RenderRequest object. The render parameter can be set during the action phase and
retrieved during the render phase of the portlet lifecycle. It cannot be retrieved
during the action phase.

Request parameter: Supports only strings. The string value is bound to the
ActionRequest object, and can be retrieved during the action processing stage of the
portlet lifecycle. The parameter value is meaningless at the conclusion of request
processing (that is, it will not persist beyond a single invocation).

Request attribute: Supports any JavaBean™ type. The bean is bound to the
ActionRequest object. Lifecycle Request Parameter.

11 of 27

Session: Supports any JavaBean type. The bean is bound to the session object and
persists for the duration and the portal server.

The Enable Cooperative Source wizard generates a WSDL file that describes the
portlet to the property broker, tagged with a distinctive icon to indicate that it is a
property source. The WSDL file contains the following sections:

Types: Describes data types (using XML schema) that can be emitted by the source
portlet.
Messages: Describes messages that can be produced or consumed by the portlet.
Port Type: Describes the abstract interface of the portlet, as seen by the property
broker.
Binding: Describes how the abstract interface (port type) is implemented.

To define the second value you want to pass from the first portlet to the target:
1. Right-click the portlet again and select Cooperative->Enable Source
2. Define the values indicated in Figure 8.

Figure 8. Specifying second data item as source

12 of 27

For the third attribute, specify the values shown in Figure 9:

Figure 9. Specifying first data items as source

Listing 1. WSDL for the source portlet
The wizard produces a WSDL file similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DemoPortlet1portlet_Service"
targetNamespace="http://demoportlets"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:portlet="http://www.ibm.com/wps/c2a"
xmlns:tns="http://demoportlets"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
<xsd:schema targetNamespace="http://demoportlets">
<xsd:simpleType name="IDDatatype">
<xsd:restriction base="xsd:string"></xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="NameDatatype">
<xsd:restriction base="xsd:string"></xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="StateDatatype">
<xsd:restriction base="xsd:string"></xsd:restriction>

</xsd:simpleType>
</xsd:schema>
</types>
<message name="IDDatatype_Response">

13 of 27

<part name="IDDatatype_Output" type="tns:IDDatatype" />
<part name="NameDatatype_Output" type="tns:NameDatatype" />
<part name="StateDatatype_Output" type="tns:StateDatatype" />

</message>
<portType name="DemoPortlet1portlet_Service">
<operation name="DemoPortlet1portlet">
<output message="tns:IDDatatype_Response" />

</operation>
</portType>
<binding name="DemoPortlet1portlet_Binding"
type="tns:DemoPortlet1portlet_Service">
<portlet:binding />
<operation name="DemoPortlet1portlet">
<portlet:action name="MyAction" actionNameParameter="ACTION_NAME"

type="standard" caption="output.data" description="Output.Data" />
<output>
<portlet:param name="FormID" partname="IDDatatype_Output"

boundTo="request-attribute" caption="output.ID" />
<portlet:param name="FormName" partname="NameDatatype_Output"

boundTo="request-attribute" caption="output.NAME" />
<portlet:param name="FormState" partname="StateDatatype_Output"

boundTo="request-attribute" caption="output.STATE" />
</output>
</operation>
</binding>

</definitions>

Define captions and description for <portlet:action> and <portlet:param>
attributes. These fields are optional but are very useful when creating wires.

Enabling DemoPortlet2 as target
Just as you enabled the first portlet to act as a source, you need to enable the
second portlet to act as a target.

Generating the WSDL
You use the Enable Cooperative Target wizard to generate the WSDL.

To launch the wizard, select the portlet and click Cooperative => Enable Target
(this step is nearly identical to enabling cooperative source).

Figure 10. Enabling the second portlet to act as target

14 of 27

15 of 27

In the Enable Cooperative Target wizard, enter these values (shown in Figure 11):

Data type: Use the exact same name that you used when you enabled the source
portlet.
Namespace: Enter the same one you used for the source.
Action: Use the exact same name that you used when you enabled the source
portlet.
Parameter: Use the exact same name that you used when you enabled the source
portlet.
Bound to: Choose None from the list.
Label and Description: These fields are optional. However, it's a good idea to fill
them because because you can use them if you decide to create wires.

Figure 11. Specifying settings for enabling the target

In order to define the remaining two attributes for the same target portlet, DO NOT
use the wizard. You need to define them inside the WSDL file directly because
wizard only supports simple data types for a single entry. If you try to use the wizard
to define multiple entries, the previous values would be overwritten.

16 of 27

Open the DemoPortlet2portlet.wsdl file and make the modifications shown in the
WSDL code listing below.

17 of 27

Listing 2: WSDL for target portlet
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="DemoPortlet2portlet_Service"
targetNamespace="http://demoportlets"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:portlet="http://www.ibm.com/wps/c2a"
xmlns:tns="http://demoportlets"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
<xsd:schema targetNamespace="http://demoportlets">
<xsd:simpleType name="IDDatatype">
<xsd:restriction base="xsd:string"></xsd:restriction>
</xsd:simpleType>

</xsd:schema>
<xsd:schema targetNamespace="http://demoportlets">
<xsd:simpleType name="NameDatatype">
<xsd:restriction base="xsd:string"></xsd:restriction>
</xsd:simpleType>

</xsd:schema>
<xsd:schema targetNamespace="http://demoportlets">
<xsd:simpleType name="StateDatatype">
<xsd:restriction base="xsd:string"></xsd:restriction>
</xsd:simpleType>

</xsd:schema>
</types>
<message name="IDDatatype_Request">
<part name="IDDatatype_Input" type="tns:IDDatatype" />
<part name="NameDatatype_Input" type="tns:NameDatatype" />
<part name="StateDatatype_Input" type="tns:StateDatatype" />

</message>
<portType name="DemoPortlet2portlet_Service">
<operation name="DemoPortlet2portlet">
<input message="tns:IDDatatype_Request" />

</operation>
</portType>
<binding name="DemoPortlet2portlet_Binding"
type="tns:DemoPortlet2portlet_Service">
<portlet:binding />
<operation name="DemoPortlet2portlet">
<portlet:action name="MyAction" actionNameParameter="ACTION_NAME"

type="standard" caption="input.Data" description="Input Data from
Source Portlet" />

<input>
<portlet:param name="FormID" partname="IDDatatype_Input"

caption="input.ID" />
<portlet:param name="FormName" partname="NameDatatype_Input"

caption="input.NAME" />
<portlet:param name="FormState" partname="StateDatatype_Input"

caption="input.STATE" />
</input>

</operation>
</binding>
</definitions>

18 of 27

Again, define captions and description for <portlet:action> and
<portlet:param> attributes.

19 of 27

Application Developer generates DemoPortlet1portlet.wsdl and
DemoPortlet2portlet.wsdl, as shown in the project view (Figure 12).

Figure 12. Specific settings for enabling the target

Modifying the Java Classes

After defining the attributes and the portlet action in the WSDL file, you need to
modify the Java code for the source and target portlets. In order for a portlet to be a
source of data, you need to use a WSDL file to flag sharable data on the output
pages. In order for a portlet to be a target, you must describe a subset of the portlet
actions, including type information for the action parameters. You use the WSDL file,
with some custom extensions, as the supported format for declaring actions and
their associated parameters for JSR 168 compliant portlets.

1- Open DemoPortlet1Portlet.java file.

2- Declare the following attributes:

20 of 27

public static final String FORM_ID = "FormID";
public static final String FORM_NAME = "FormName";
public static final String FORM_STATE = "FormState";
public static final String ACTION_TEXT = "MyAction";

Make sure the values of FORM_ID, FORM_NAME and FORM_STATE are the same
name defined for <portlet:param> in the WSDL file.

3- Modify processAction() method

public void processAction(ActionRequest request,
ActionResponse response) throws PortletException,
java.io.IOException {

String id = request.getParameter(FORM_ID);
String name = request.getParameter(FORM_NAME);
String state = request.getParameter(FORM_STATE);

request.setAttribute(FORM_ID, id);
request.setAttribute(FORM_NAME, name);
request.setAttribute(FORM_STATE, state);

}

3- Save the changes.

4- Open DemoPortlet2PortletSessionBean.java and define following attributes:

private String id = "";
private String name = "";
private String state = "";

5- Generate getter and setter methods for the above attributes and save the

changes.

6- Open DemoPortlet2Portlet.java file.

7- Declare the following attributes:

public static final String FORM_ID = "FormID";
public static final String FORM_NAME = "FormName";
public static final String FORM_STATE = "FormState";
public static final String ACTION_TEXT = "MyAction";

Important: Make sure that the values for FORM_ID, FORM_NAME, and
FORM_STATE are the same as the name values defined for <portlet:param> in the
WSDL file.

8- Modify processAction() method:

public void processAction(ActionRequest request,
ActionResponse response) throws PortletException,
java.io.IOException {

21 of 27

DemoPortlet2PortletSessionBean sessionBean =
getSessionBean(request);

String id = request.getParameter(FORM_ID);
String name = request.getParameter(FORM_NAME);
String state = request.getParameter(FORM_STATE);

sessionBean.setId(id);
sessionBean.setName(name);
sessionBean.setState(state);

}

9- Save the changes.

22 of 27

Modifying the JSP
You need to make the following modifications in the JSP code, so that a user can
provide input values to the source portlet. The target portlet will display the input
values on the page.

1- Open DemoPortlet1PortletView.jsp.

2- Modify the JSP code as follows:

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,demoportlet1.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<%
PortletURL actionUrl = renderResponse.createActionURL();
actionUrl.setParameter("ACTION_NAME",
DemoPortlet1Portlet.ACTION_TEXT);
%>

<FORM method="POST" action="<%= actionUrl.toString() %>">
Enter ID: <INPUT name="<%=DemoPortlet1Portlet.FORM_ID%>"
type="text"/>

Enter Name: <INPUT name="<%=DemoPortlet1Portlet.FORM_NAME%>"
type="text"/>

Enter State: <INPUT name="<%=DemoPortlet1Portlet.FORM_STATE%>"
type="text"/>

<INPUT name="<%=DemoPortlet1Portlet.FORM_SUBMIT%>" type="submit"
value="Submit"/>
</FORM>

3- Save the changes.

4- Open DemoPortlet2PortletView.jsp.

5- Modify the JSP code as follows:

<%@ page session="false" contentType="text/html"
import="java.util.*,javax.portlet.*,demoportlet2.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<%
DemoPortlet2PortletSessionBean sessionBean =
(DemoPortlet2PortletSessionBean)renderRequest.getPortletSession().ge
tAttribute(DemoPortlet2Portlet.SESSION_BEAN);
%>

Entered Id is = <%= sessionBean.getId()%>

Entered Name is = <%= sessionBean.getName()%>

Entered State is = <%= sessionBean.getState()%>

6- Save the changes.

23 of 27

Deploy the DemoPortlets.war portlet
Now, you export the WAR so that you can deploy the portlet application into
WebSphere Portal 5.0 to test the portlets.

1- Export the DemoPortlets Project as a WAR file.

Figure 13. Exporting the project as a WAR

24 of 27

2- Install the DemoPortlets.war file in WebSphere Portal Server.

Figure 14. Installing the WAR file (portlet application)

3- After the installation of the portlet is completed, create a page.

4- Place both the portlets on the same page.

5- Create the wires between both portlets by selecting the Wire link on top of the

page.

6- Define a wire for each attribute defined and click Add wire, as shown in the

figure.

25 of 27

Figure 15. Exporting the project as a WAR

7- After you have created all the wires, click Done.

8- Go to the page where both portlets are placed.

9- Test the portlets by entering dummy data and pressing Submit. You should see

the values on the second portlet.

Conclusion
Even though the JSR 168 specification does not include a definition for inter-portlet
communication, WebSphere Portal V5.1 provides an extension for cooperative
portlets which enables one JSR 168 portlet to communicate with another JSR 168
portlet. Enterprise portals are filled with opportunities for applying cooperative
portlet capabilities. You can use the simple example you just completed as an
example for applying this capability in your own portal.

Download
To get the download file, see the cover page for this tutorial, at:
https://www6.software.ibm.com/developerworks/education/websphere/0509_saddal/0509_saddal.html

26 of 27

https://www6.software.ibm.com/developerworks/education/websphere/0509_saddal/0509_saddal.html

Resources

WebSphere Portal Server V5.1 InfoCenter
http://publib.boulder.ibm.com/pvc/wp/510/ent/en/InfoCenter/index.html

WebSphere Portal product documentation
http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html

WSDL specifications
http://www.w3.org/TR/wsdl

IBM Redbook: IBM Rational Application Developer V6 Portlet Application
Development and Portal Tools
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246681.html

Developing JSF Portlets with Rational Application Developer 6.0 and WebSphere
Portal Server 5.1, Part 1: Developing JSR168 JSF Portlets
http://www.ibm.com/developerworks/rational/library/05/genkin/index.html

Other articles about portlet cooperation:
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=coope
rative+portlets&product_by=WebSphere+Portal

Other JSR 168 resources:
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=JSR+
168&product_by=WebSphere+Portal

WebSphere Portal zone
http://www.ibm.com/developerworks/websphere/zones/portal/

Rational Application Developer for WebSphere Software
http://www.ibm.com/developerworks/rational/products/rad/

About the author

Asim S Saddal is a Senior IT Specialist with the WebSphere Application
and Portal server practice in the IBM Software Services for WebSphere
(ISSW) in Chicago, Illinois.

27 of 27

http://publib.boulder.ibm.com/pvc/wp/510/ent/en/InfoCenter/index.html
http://www.ibm.com/developerworks/websphere/zones/portal/proddoc.html
http://www.w3.org/TR/wsdl
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246681.html
http://www.ibm.com/developerworks/rational/library/05/genkin/index.html
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=cooperative+portlets&product_by=WebSphere+Portal
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=cooperative+portlets&product_by=WebSphere+Portal
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=JSR+168&product_by=WebSphere+Portal
http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?search_by=JSR+168&product_by=WebSphere+Portal
http://www.ibm.com/developerworks/websphere/zones/portal/
http://www.ibm.com/developerworks/rational/products/rad/

	Abstract
	Introduction
	About the sample code
	Before you begin
	Introducing the DemoPortlets scenario

	Creating DemoPortlet1
	Creating DemoPortlet2
	Enabling the DemoPortlet1 as a source
	Describing the source with WSDL
	Listing 1. WSDL for the source portlet

	Enabling DemoPortlet2 as target
	Generating the WSDL
	Listing 2: WSDL for target portlet

	Modifying the Java Classes
	Modifying the JSP
	Deploy the DemoPortlets.war portlet
	Conclusion
	Download
	About the author

