draft-ietf-dnsext-unknown-rrs-00.txt

     
INTERNET-DRAFT                                       Andreas Gustafsson
draft-ietf-dnsext-unknown-rrs-00.txt                       Nominum Inc.
                                                          November 2000


                    Handling of Unknown DNS RR Types


Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

Abstract

   Extending the Domain Name System with new Resource Record types
   currently requires changes to name server software.  This document
   specifies the changes necessary to allow future DNS implementations
   to handle new RR types transparently.

1. Introduction

   The DNS is designed to be extensible to support new services through
   the introduction of new resource record (RR) types.  In practice,
   deploying a new RR type currently requires changes to the name server
   software not only at the authoritative DNS server that is providing
   the new information and the client making use of it, but also at all
   slave servers for the zone containing it, and in some cases also at
   caching name servers and forwarders used by the client.

   Because the deployment of new server software is slow and expensive,
   the potential of the DNS in supporting new services has never been



Expires May 2001                                                [Page 1]

draft-ietf-dnsext-unknown-rrs-00.txt                       November 2000


   fully realized.  This memo proposes changes to name servers and to
   procedures for defining new RR types aimed at simplifying the future
   deployment of new RR types.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC 2119].

2. Definitions

   In this document, a "well known" RR type means one defined in
   RFC1035.

   An "RR of unknown type" is an RR type whose RDATA format is not known
   to the DNS implementation at hand, and which therefore cannot be
   converted to a type-specific text format, compressed, or otherwise
   handled in any type-specific way.  This includes the case where the
   RR's type is recognized but its RDATA format is class specific and
   the RR is of a class for which the format is not known.

3. Transparency

   To enable new RR types to be deployed without server changes, name
   servers and resolvers MUST handle RRs of unknown type transparently.
   That is, they must treat the RDATA section of such RRs as
   unstructured binary data, storing and transmitting it without change.

4. Domain Name Compression

   RRs containing compression pointers in the RDATA part cannot be
   treated transparently, as the compression pointers are only
   meaningful within the context of a DNS message.  Transparently
   copying the RDATA into a new DNS message would cause the compression
   pointers to point at the corresponding location in the new message,
   which now contains unrelated data.  This would cause the compressed
   name to be corrupted.

   To avoid such corruption, servers MUST NOT compress domain names
   embedded in the RDATA of types that are not well known.

   Receiving servers MUST decompress domain names in RRs of well-known
   type, and SHOULD also decompress RRs of type RP, AFSDB, RT, SIG, PX,
   NXT, NAPTR, and SRV (although the SRV RR is clearly defined to not
   allow compression of the target field, some existing name servers
   compress it anyway).

   Future specifications for new RR types that contain domain names
   within their RDATA MUST NOT allow the use of name compression for



Expires May 2001                                                [Page 2]

draft-ietf-dnsext-unknown-rrs-00.txt                       November 2000


   those names, and SHOULD explicitly state that the embedded domain
   names MUST NOT be compressed.

5. Text Representation

   In the "type" field of a master file line, an unknown RR type is
   represented by the word "TYPE" immediately followed by the decimal RR
   type number, with no intervening whitespace.  In the "class" field,
   an unknown class is similarly represented as the word "CLASS"
   immediately followed by the decimal class number.

   This convention allows types and classes to be distinguished from
   each other and from TTL values, allowing the "[<TTL>] [<class>]
   <type> <RDATA>" and "[<class>] [<TTL>] <type> <RDATA>" forms of
   RFC1035 to both be unambiguously parsed.

   The RDATA section of an RR of unknown type is represented as a
   sequence of white space separated words as follows:

      The special token \# (a backslash immediately
      followed by a hash sign), which identifies the
      RDATA as having the generic encoding defined
      herein rather than a traditional type-specific
      encoding.

      An unsigned decimal integer specifying the
      RDATA length in octets.

      Zero or more words of hexadecimal data encoding
      the actual RDATA field, each containing an even
      number of hexadecimal digits.

   If the RDATA is of zero length, the text representation contains only
   the \# token and the single zero representing the length.

   An implementation MAY also choose to represent some RRs of known type
   using the above generic representations for the type, class and/or
   RDATA, which carries the benefit of making the resulting master file
   portable to servers where these types are unknown.

   Even though an RR of known type represented in the \# format is
   effectively treated as an unknown type for the purpose of parsing the
   RDATA text representation, all further processing by the server MUST
   treat it as a known type and take into account any applicable type-
   specific rules regarding compression, canonicalization, etc.

   The following are examples of RRs represented in this manner,
   illustrating various combinations of generic and type-specific



Expires May 2001                                                [Page 3]

draft-ietf-dnsext-unknown-rrs-00.txt                       November 2000


   encodings for the different fields of the master file format:

     a.example.   CLASS32     TYPE731         \# 6 abcd (
                                              ef 01 23 45 )
     b.example.   HS          TYPE62347       \# 0
     e.example.   IN          A               \# 4 0A000001
     e.example.   CLASS1      TYPE1           10.0.0.2

6. Equality Comparison

   Certain DNS protocols, notably Dynamic Update [RFC2136], require RRs
   to be compared for equality.  Two RRs of the same unknown type are
   considered equal when their RDATA is bitwise equal.  To ensure that
   the outcome of the comparison is identical whether the RR is known to
   the server or not, specifications for new RR types MUST NOT specify
   type-specific comparison rules.

   This implies that embedded domain names, being included in the
   overall bitwise comparison, are compared in a case-sensitive manner.
   As a result, when a new RR type contains one or more embedded domain
   names, it is possible to have multiple RRs owned by the same name
   that differ only in the character case of the embedded domain
   name(s).  This is similar to the existing possibility of multiple TXT
   records differing only in character case, and not expected to cause
   any problems in practice.

7. DNSSEC Canonical Form and Ordering

   DNSSEC [RFC2535] defines a canonical form and ordering for RRs.  In
   the canonical form, domain names embedded in the RDATA are converted
   to lower case.

   To ensure backwards compatilbility, this canonical form remains
   unchanged for any RR types defined in RFC2931 or earlier.  That is,
   the domain names embedded in RRs of type NS, MD, MF, CNAME, SOA, MB,
   MG, MR, PTR, HINFO, MINFO, MX, HINFO, RP, AFSDB, RT, SIG, PX, NXT,
   NAPTR, KX, SRV, DNAME, and A6 are converted to lower case.  For all
   other RR types, the canonical form is hereby changed such that no
   downcasing of embedded domain names takes place.  The owner name is
   still set to lower case.

   The canonical ordering is as specified in RFC2535 section 8.3, where
   the octet sequence is the canonical form as revised by this
   specification.

8. Additional Section Processing

   Unknown RR types cause no additional section processing.  Future RR



Expires May 2001                                                [Page 4]

draft-ietf-dnsext-unknown-rrs-00.txt                       November 2000


   type specifications MAY specify type-specific additional section
   processing rules, but any such processing MUST be optional as it can
   only be performed by servers for which the RR type in case is known.

   9. IANA Considerations

   The IANA is hereby requested to verify that specifications for new RR
   types requesting an RR type number comply with this specification.
   In particular, the IANA MUST NOT assign numbers to RR types whose
   specification allows embedded domain names to be compressed.

   10. Security Considerations

   This specification is not believed to cause any new security
   problems, nor to solve any existing ones.

References

   [RFC1034] - Domain Names - Concepts and Facilities, P. Mockapetris,
   November 1987.

   [RFC1035] - Domain Names - Implementation and Specifications, P.
   Mockapetris, November 1987.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
   Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2136] Dynamic Updates in the Domain Name System (DNS UPDATE).  P.
   Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound. April 1997.

   [RFC2535] Domain Name System Security Extensions. D. Eastlake.  March
   1999.

Author's Address

   Andreas Gustafsson
   Nominum Inc.
   950 Charter Street
   Redwood City, CA 94063
   USA

   Phone: +1 650 779 6004

   Email: Andreas.Gustafsson@nominum.com


Full Copyright Statement




Expires May 2001                                                [Page 5]

draft-ietf-dnsext-unknown-rrs-00.txt                       November 2000


   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implmentation may be prepared, copied, published and
   distributed, in whole or in part, without restriction of any kind,
   provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."


























Expires May 2001                                                [Page 6]