INTERNET-DRAFT Andreas Gustafsson draft-ietf-dnsext-unknown-rrs-00.txt Nominum Inc. November 2000 Handling of Unknown DNS RR Types Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Abstract Extending the Domain Name System with new Resource Record types currently requires changes to name server software. This document specifies the changes necessary to allow future DNS implementations to handle new RR types transparently. 1. Introduction The DNS is designed to be extensible to support new services through the introduction of new resource record (RR) types. In practice, deploying a new RR type currently requires changes to the name server software not only at the authoritative DNS server that is providing the new information and the client making use of it, but also at all slave servers for the zone containing it, and in some cases also at caching name servers and forwarders used by the client. Because the deployment of new server software is slow and expensive, the potential of the DNS in supporting new services has never been Expires May 2001 [Page 1] draft-ietf-dnsext-unknown-rrs-00.txt November 2000 fully realized. This memo proposes changes to name servers and to procedures for defining new RR types aimed at simplifying the future deployment of new RR types. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119]. 2. Definitions In this document, a "well known" RR type means one defined in RFC1035. An "RR of unknown type" is an RR type whose RDATA format is not known to the DNS implementation at hand, and which therefore cannot be converted to a type-specific text format, compressed, or otherwise handled in any type-specific way. This includes the case where the RR's type is recognized but its RDATA format is class specific and the RR is of a class for which the format is not known. 3. Transparency To enable new RR types to be deployed without server changes, name servers and resolvers MUST handle RRs of unknown type transparently. That is, they must treat the RDATA section of such RRs as unstructured binary data, storing and transmitting it without change. 4. Domain Name Compression RRs containing compression pointers in the RDATA part cannot be treated transparently, as the compression pointers are only meaningful within the context of a DNS message. Transparently copying the RDATA into a new DNS message would cause the compression pointers to point at the corresponding location in the new message, which now contains unrelated data. This would cause the compressed name to be corrupted. To avoid such corruption, servers MUST NOT compress domain names embedded in the RDATA of types that are not well known. Receiving servers MUST decompress domain names in RRs of well-known type, and SHOULD also decompress RRs of type RP, AFSDB, RT, SIG, PX, NXT, NAPTR, and SRV (although the SRV RR is clearly defined to not allow compression of the target field, some existing name servers compress it anyway). Future specifications for new RR types that contain domain names within their RDATA MUST NOT allow the use of name compression for Expires May 2001 [Page 2] draft-ietf-dnsext-unknown-rrs-00.txt November 2000 those names, and SHOULD explicitly state that the embedded domain names MUST NOT be compressed. 5. Text Representation In the "type" field of a master file line, an unknown RR type is represented by the word "TYPE" immediately followed by the decimal RR type number, with no intervening whitespace. In the "class" field, an unknown class is similarly represented as the word "CLASS" immediately followed by the decimal class number. This convention allows types and classes to be distinguished from each other and from TTL values, allowing the "[<TTL>] [<class>] <type> <RDATA>" and "[<class>] [<TTL>] <type> <RDATA>" forms of RFC1035 to both be unambiguously parsed. The RDATA section of an RR of unknown type is represented as a sequence of white space separated words as follows: The special token \# (a backslash immediately followed by a hash sign), which identifies the RDATA as having the generic encoding defined herein rather than a traditional type-specific encoding. An unsigned decimal integer specifying the RDATA length in octets. Zero or more words of hexadecimal data encoding the actual RDATA field, each containing an even number of hexadecimal digits. If the RDATA is of zero length, the text representation contains only the \# token and the single zero representing the length. An implementation MAY also choose to represent some RRs of known type using the above generic representations for the type, class and/or RDATA, which carries the benefit of making the resulting master file portable to servers where these types are unknown. Even though an RR of known type represented in the \# format is effectively treated as an unknown type for the purpose of parsing the RDATA text representation, all further processing by the server MUST treat it as a known type and take into account any applicable type- specific rules regarding compression, canonicalization, etc. The following are examples of RRs represented in this manner, illustrating various combinations of generic and type-specific Expires May 2001 [Page 3] draft-ietf-dnsext-unknown-rrs-00.txt November 2000 encodings for the different fields of the master file format: a.example. CLASS32 TYPE731 \# 6 abcd ( ef 01 23 45 ) b.example. HS TYPE62347 \# 0 e.example. IN A \# 4 0A000001 e.example. CLASS1 TYPE1 10.0.0.2 6. Equality Comparison Certain DNS protocols, notably Dynamic Update [RFC2136], require RRs to be compared for equality. Two RRs of the same unknown type are considered equal when their RDATA is bitwise equal. To ensure that the outcome of the comparison is identical whether the RR is known to the server or not, specifications for new RR types MUST NOT specify type-specific comparison rules. This implies that embedded domain names, being included in the overall bitwise comparison, are compared in a case-sensitive manner. As a result, when a new RR type contains one or more embedded domain names, it is possible to have multiple RRs owned by the same name that differ only in the character case of the embedded domain name(s). This is similar to the existing possibility of multiple TXT records differing only in character case, and not expected to cause any problems in practice. 7. DNSSEC Canonical Form and Ordering DNSSEC [RFC2535] defines a canonical form and ordering for RRs. In the canonical form, domain names embedded in the RDATA are converted to lower case. To ensure backwards compatilbility, this canonical form remains unchanged for any RR types defined in RFC2931 or earlier. That is, the domain names embedded in RRs of type NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR, HINFO, MINFO, MX, HINFO, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX, SRV, DNAME, and A6 are converted to lower case. For all other RR types, the canonical form is hereby changed such that no downcasing of embedded domain names takes place. The owner name is still set to lower case. The canonical ordering is as specified in RFC2535 section 8.3, where the octet sequence is the canonical form as revised by this specification. 8. Additional Section Processing Unknown RR types cause no additional section processing. Future RR Expires May 2001 [Page 4] draft-ietf-dnsext-unknown-rrs-00.txt November 2000 type specifications MAY specify type-specific additional section processing rules, but any such processing MUST be optional as it can only be performed by servers for which the RR type in case is known. 9. IANA Considerations The IANA is hereby requested to verify that specifications for new RR types requesting an RR type number comply with this specification. In particular, the IANA MUST NOT assign numbers to RR types whose specification allows embedded domain names to be compressed. 10. Security Considerations This specification is not believed to cause any new security problems, nor to solve any existing ones. References [RFC1034] - Domain Names - Concepts and Facilities, P. Mockapetris, November 1987. [RFC1035] - Domain Names - Implementation and Specifications, P. Mockapetris, November 1987. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2136] Dynamic Updates in the Domain Name System (DNS UPDATE). P. Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound. April 1997. [RFC2535] Domain Name System Security Extensions. D. Eastlake. March 1999. Author's Address Andreas Gustafsson Nominum Inc. 950 Charter Street Redwood City, CA 94063 USA Phone: +1 650 779 6004 Email: Andreas.Gustafsson@nominum.com Full Copyright Statement Expires May 2001 [Page 5] draft-ietf-dnsext-unknown-rrs-00.txt November 2000 Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." Expires May 2001 [Page 6]