
WebSphere® WebSphere Dashboard Framework

Alerts Module Technical Reference

Version 6.0

Windows 2000 and Windows XP

SC23-5922-00

���

WebSphere® WebSphere Dashboard Framework

Alerts Module Technical Reference

Version 6.0

Windows 2000 and Windows XP

SC23-5922-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 27.

First Edition (March 2007)

This edition applies to version 6.0 of IBM WebSphere Dashboard Framework (product number L-JNEN-6QKLT6)

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction to the Alerts Module

Technical Reference 1

Developing alert evaluators 3

Common themes in evaluator development 3

Type-specific evaluator requirements 5

Understanding alert instance content 5

Alert field semantics 6

Handling special alert fields 7

Creating a simple class-based alert evaluator . . . 9

Creating the stub evaluator class 9

Creating an unpopulated alert instance and

returning it in the list 9

Populating required fields in the alert instance . 10

Adding business logic to an alert evaluator . . . 11

Setting localized text 12

Creating the alert definition 13

Testing the new alert definition and evaluator . . 13

Creating a model-based evaluator 14

Examining the LJO’s source file 14

Creating the evaluator model 14

Examining the XML of the sample alert

model-based evaluator 15

Adding alerts to a portlet 17

Preparing to add alerts to a portlet 17

Creating data service providers 17

Defining alert evaluation properties 18

Implementing the alert evaluator 18

Enabling the Alert definition 20

Creating a data portlet 20

Design guidelines for data portlets 20

Adding an Alert Data builder to the Service

Provider model 20

Adding a Status Indicator builder to the data

portlet model 20

Creating a My Alerts portlet 21

Alerts directories 23

Notices 27

Trademarks 29

© Copyright IBM Corp. 2007 iii

iv WebSphere Dashboard Framework Alerts Module Technical Reference

Introduction to the Alerts Module Technical Reference

Experienced developers will find in-depth technical information in this reference,

including information about creating alert evaluators and creating data portlets to

support alerts.

If you are new to WebSphere Dashboard Framework or are looking for basic

information about alerts management and development, start with these sources of

information first:

1. WebSphere Dashboard Framework Help - See ″Working with alerts″ for

information about tasks related to defining, scheduling, and displaying alerts in

an application.

2. The Alerts Module Examples feature set contains a sample Sales Orders

portlet that leverages alerting features.

3. The WebSphere Dashboard Framework sample application and Alerts tutorial

also demonstrate how to incorporate alerts into applications.

4. Portlet help topics - Both the Manage Alerts and My Alerts portlets provide

help for completing tasks supported by each portlet. Portlet Help is accessible

by clicking the ’?’ on the portlet title bar.

5. Online documentation is available on the IBM Web site. Select Start → All

Programs → IBM WebSphere → Dashboard Framework → Online

Documentation to link to the Web site.

© Copyright IBM Corp. 2007 1

2 WebSphere Dashboard Framework Alerts Module Technical Reference

Developing alert evaluators

This section describes how to develop a variety of alert evaluators that contain all

of the business logic that defines when alerts are activated, their priority, and many

other attributes.

Common themes in evaluator development

The actual implementation of each evaluator type involves different technology

and approaches, but there are some common themes that unify the development of

all evaluators.

By design all alert evaluators look and behave the same from the perspective of

the alerts engine. The only apparent difference is in how the alerts engine invokes

the evaluator to obtain alert instances. The themes shown below will help you

extend your knowledge of one type of evaluator to build other types of evaluators.

All evaluators have an evaluate method

When the alerts engine invokes an evaluator, it calls the evaluate method. The

form of this method differs but it must always be present. For example, a

class-based evaluator will have a public method named ″evaluate″ while a

model-based evaluator will have an evaluate method built into the model.

The evaluate method always takes the same parameters

When the evaluate method is called, the alerts engine always passes the same set

of parameters. Those parameters are detailed in the table below along.

 Name Type Description

Alert ID String Unique string ID of the alert

definition that references the

evaluator. Since a single

evaluator can be referenced

by multiple definitions, this

gives the evaluator a way of

knowing the ID of the alert

definition for which it is

being invoked. The evaluator

may then use this ID to

customize its behavior or

return different sets of alerts.

Category ID String String ID of the alert

definition’s category.

Evaluators will use this ID to

lookup the user visible

Display Category that should

be assigned to any alert

instances created by this

invocation of the evaluate

method.

© Copyright IBM Corp. 2007 3

Name Type Description

Locale java.util.Locale The preferred locale of the

user on whose behalf alerts

are being evaluated. The

evaluator will typically use

this parameter to identify the

resource bundle to be used

when looking up user visible

strings such as Display

Category, Display Name, and

Display Text for alert

instances.

Map java.util.Map The set of runtime properties

to be used by the evaluator

when it creates alert

instances for this invocation.

The property values are a

combination of those default

values specified in the alert

definition and those custom

values specified by the user

on whose behalf alerts are

being evaluated. These

properties will typically be

threshold values used by the

evaluator to determine alert

fields such as Active and

Priority.

The evaluate method always returns a list of Alert instances

Each invocation of the evaluate method may return zero or more alert instances. To

support this multiplicity the method must return those instances wrapped in a

java.util.List object for class- and model-based evaluators. External evaluators

return the list of instances encoded in XML as defined by the alerting.xsd schema

in WEB-INF/solutions/alerting/schemas.

If no alert instances are generated, then the evaluator must return an empty list.

Evaluators are responsible for creating localized alert instances

When the alerts engine invokes an evaluator it passes in the preferred locale of the

user on whose behalf alerts are being evaluated. The evaluator must use the locale

parameter to select an appropriate resource bundle from which localized user

visible strings are retrieved.

Alert instances caching is controlled by evaluators

The alerts engine maintains the cache of evaluated alert instances, but it is the

evaluators that control whether their created alert instances are cached or not. Each

created alert instance contains a Creation Date and an Expiration Date field. If the

evaluator sets both fields, then the alerts engine caches the instances until the

Expiration Date passes. On the other hand, if either field is set as null, then the

alerts engine will not cache the instance. This gives evaluators the ability to control

when their created alert instances are cached and for how long.

4 WebSphere Dashboard Framework Alerts Module Technical Reference

Type-specific evaluator requirements

There are three types of alert definitions: script-based, custom, and external.

Custom evaluators are grouped into two types: class-based and model-based. Each

type of evaluator has specific requirements.

Class-based evaluators

1. The evaluator class must be declared public and be derived from interface

AlertEvaluator in the package com.bowstreet.solutions.alerting.impl. This

interface defines the method named evaluate that will be invoked by the alerts

engine when it evaluates the state of alerts.

2. The class must define a public no-argument constructor. This constructor will

be used by the alerts engine to create instances of the evaluator class.

3. The evaluate method must return a list of zero more object instances derived

GenericAlert in the package com.bowstreet.solutions.alerting.impl.

4. When deployed the class must be on the Factory’s classpath so it can be loaded

by the alerts engine at runtime. The Factory’s classpath includes

/WEB-INF/work/classes, /WEB-INF/work/lib, /WEB-INF/lib,

/WEB-INF/classes, and the application server’s classpath. If the evaluator class

is not located in one of these places, then evaluation of the alerts associated

with the definition will fail at runtime. The alerts engine will create an instance

of the class each time it needs to evaluate alerts. If the class cannot be loaded

or it does not implement the AlertEvaluator interface, then alerts for the

associated definition will not be evaluated and the alerts engine will log an

error.

Model-based evaluators

1. The model must define a public method named ″evaluate″ that returns an

instance of java.util.List. Furthermore, the list must contain zero more object

instances derived from com.bowstreet.solutions.alerting.impl.GenericAlert.

2. The evaluate method must take four parameters: an Alert ID, a Category ID, a

locale, and a set of properties. Both IDs are java.util.Strings, the locale is of type

java.util.Locale, and the properties are an instance of java.util.Map. The alerts

engine will create an instance of the model and invoke the method when it

needs the model to evaluate alerts associated with the definition. If a method of

the specified signature cannot be found in the model, then alerts for the

definition cannot be evaluated and the alerts engine will log an error.

Understanding alert instance content

This topic explains what is contained in an alert instance.

All evaluators, when invoked, will create zero or more alert instances that are

returned to the alerts engine. Before any instances are created, an evaluator will

typically collect application-specific business data that it uses to determine how

many alerts should be generated and determine the actual field values of the

created instances.

An alert instance is composed of a set of fields with specific semantic meanings.

Each evaluator is required to create instances that conform to these semantics.

Class- and model-based evaluators are required to return a list of Java object

instances derived from the class GenericAlert in package

com.bowstreet.solutions.alerting.impl.

Developing alert evaluators 5

Regardless of how an alert instance is created, its fields must obey the semantic

requirements outlined in the following section.

Alert field semantics

The fields in an alert instance must obey the following semantic requirements.

Alert Field Name Required

Description / Semantic

Meaning

Alert ID Yes Unique string ID of this alert

instance that is derived from

the ID of the alert definition

used to generate the

instance. It serves as a way

for the alerts engine to trace

an instance back to its

associated definition.

Category ID Yes String ID of the category to

which this instance belongs.

Applications will use this ID

to lookup the user visible

name for the category.

Creation Date Yes Positive long value

indicating the date and time

at which the logical alert

represented by this instance

was created. This is not a

timestamp of the instance’s

creation.

Detailed Display Text No The alert’s detailed text in a

form that is displayable to a

user. The evaluator must set

the text using the preferred

locale of the user requesting

the alert.

Display Category No The alert’s category in a form

that is displayable to a user.

The evaluator must set the

text using the preferred

locale of the user requesting

the alert.

Display Name No The alert’s name in a form

that is displayable to a user.

The evaluator must set the

text using the preferred

locale of the user requesting

the alert.

Display Text No The alert’s text in a form that

is displayable to a user. The

evaluator must set the text

using the preferred locale of

the user requesting the alert.

This string will typically be

an abbreviated form of the

Detailed Display Text field.

6 WebSphere Dashboard Framework Alerts Module Technical Reference

Alert Field Name Required

Description / Semantic

Meaning

Expiration Date No Positive long value

indicating the date and time

at which the logical alert

represented by this instance

should no longer be cached.

Priority No Integer value indicating the

priority of this alert. Note: a

value of 1 is higher priority

than a value of 2.

Version No Free form string used by the

evaluator to mark the

version of this alert instance.

The alerts engine uses this

version string to determine

when two or more alerts

with the same ID are really

different and should be

treated as such for caching

purposes. The version is also

used by the alerts engine to

determine when an alert

deleted by a user should be

displayed to again because it

is new.

Handling special alert fields

Follow the rules in this section for alert fields to set appropriate values in an

evaluator.

Setting the Alert ID field

Follow these rules when setting the Alert ID value for the evaluator.

The Alert ID of an instance is derived from the unique Alert ID of the definition

from which the instance was generated. This behavior allows all alert instances to

be traced back to their associated definitions and to be sorted, categorized, and

filtered by portlets and the alerts engine.

The Alert ID value set by the evaluator is determined by the nature of the data the

evaluator uses in its calculations and whether it is possible for the evaluator to

return multiple instances of an alert for a single invocation. Here are the rules you

must follow:

1. If the evaluator can only return a single alert instance for each invocation, then

the Alert ID of an instance must be set to the Alert ID passed in to the

evaluator by the alerts engine. This scenario is most common when the data

used in the evaluation is a single value or there are multiple values, but they

do not need to be represented in finer detail for alerting purposes.

2. On the other hand, if the evaluator can return multiple instances for each

invocation, then the Alert ID passed in to the evaluator must be suffixed with

an appropriate identifying string before being used to set the Alert ID of each

instance. This scenario is very common when an evaluator deals with sets of

related data and each member of the set may require an individual alert

instance. A good example is an evaluator that deals with EBITA data that is

broken out by company division and the business requirements dictate that an

Developing alert evaluators 7

alert should be generated for each division that falls below some threshold.

Note: EBITA is a business financial term meaning Earnings Before Interest,

Taxes, and Amortization.

If the evaluator chooses to add an identifying string suffix to the Alert ID, then the

suffix must be separated from the Alert ID by a forward slash. The forward slash

is used by the alerts engine to determine where the Alert ID ends and the suffix

begins.

The identifying string must also be unique so that each alert instance returned has

a unique Alert ID field. An evaluator should choose an identifying string that is

meaningful to portlet developers and, if possible, derived from the set of data used

to generate the set of alert instances. For example, for an evaluator that deals with

EBITA data broken out by division, you could use the unique division name as the

identifying string. Thus each created alert would be assigned a unique ID that

traces back to both the alert definition from which is was generated and the

divisional data used to set the instance’s field values. One such Alert ID might

look like this: ″EBITA/ConsumerProducts.″

Setting the Category ID Field

The Category ID of an instance should be set to the Category ID passed in to the

evaluator by the alerts engine. This is the Category ID of the definition from which

the instance is being generated.

Setting the Creation Date field

The creation date of an alert instance is the date on which the logical business alert

it represents is considered to have been created in the system.

For example, a Sales alert instance that is based upon the last month’s data would

have a creation date set to the first day of the current month, if the expiration of its

definition is ″month.″ For example, instances of an alert created using April 2007

data would have a creation date of ″01 May 2007″ to signify that the alert was

logically created on the first day after the month closed. This approach ensures

that alert instances accurately represent logical business semantics regardless of

when they are physically created by an evaluator.

Setting the Expiration Date Field

The Expiration Date of an alert is the date upon which the alert expires and is no

longer cached.

The alerts engine uses the alert’s Expiration Date to determine when the alert is

stale and needs to be re-evaluated. The alerts engine considers an alert stale and

re-evaluates it when Expiration Date is less than the current system time. For

example, a Sales alert created in April 2007 would calculate an Expiration Date of

one month after the Creation Date since its state is valid for the entire month of

May 2007. That causes the alerts engine to cache the instance for a month. When

June 2007 arrives, the alert for May 2007 becomes stale and the alerts engine will

again call the evaluator. This time the evaluator will return an alert instance with a

Creation Date of ″01 June 2007″ and an Expiration Date one month later. In this

way the evaluator can control the caching behavior of the alerts engine.

Setting the Version field

The Version string is a free form field used by evaluators to encode the version of

the alert represented by a specific alert instance.

The importance and use of the Version field is best illustrated by an example.

8 WebSphere Dashboard Framework Alerts Module Technical Reference

Consider an EBITA alert evaluator that generates a set of new alert instances on

the first day after a quarter closes. The alert instances will have the same Alert ID

values as those generated for the previous quarter (because they were generated

from the same alert definition). Since the alerts engine has no knowledge of how

the instances are created, it is unable to distinguish between a set of old instances

and a new set. The Version field is used tell the alerts engine that an instance is

new and, more importantly, that it should be presented to portlet users as a new

instance even if they DELETED the previous instance of the same Alert ID.

The evaluator should set the Version field so that it changes in lock step with the

data used to generate alerts. For example, if the evaluator uses quarterly data then

it could use a string such as ″2Q 2007″ to signify that the instance is associated

with data from the 2nd quarter of 2007.

Creating a simple class-based alert evaluator

This section explains how to create a simple class-based threshold evaluator.

Creating the stub evaluator class

This topic shows sample code for a stub evaluator class.

The code shown below conforms to the type-specific requirements for a class-based

evaluator. Most importantly it contains a default constructor, derives from

AlertEvaluator, and the evaluate method returns an empty java.util.List of alert

instances.

package com.mycompany.alerting.evaluators;

import java.util.ArrayList;

import java.util.List;

import java.util.Locale;

import java.util.Map;

import com.bowstreet.solutions.alerting.AlertsEngineException;

import com.bowstreet.solutions.alerting.impl.AlertEvaluator;

public class ThresholdEvaluator implements AlertEvaluator

{

 public ThresholdEvaluator()

 {

 super();

 }

 public List evaluate(String alertID, String categoryID, Locale locale, Map properties)

 throws AlertsEngineException

 {

 return new ArrayList();

 }

}

1.

2.

3.

Creating an unpopulated alert instance and returning it in the

list

The GenericAlert class is included as part of the Alerts Module features set and is

to be used by evaluators for creating alert instances.

Developing alert evaluators 9

The evaluate method is modified to create an instance of ″GenericAlert″ and wrap

it in the list returned to the alerts engine. The GenericAlert class is included as part

of the Alerts Module features set and is to be used by evaluators for creating alert

instances. Unless you need to add custom fields or behavior to an alert instance

you should always just create instances of ″GenericAlert.″

package com.mycompany.alerting.evaluators;

import java.util.ArrayList;

import java.util.List;

import java.util.Locale;

import java.util.Properties;

import com.bowstreet.solutions.alerting.AlertsEngineException;

import com.bowstreet.solutions.alerting.impl.AlertEvaluator;

import com.bowstreet.solutions.alerting.impl.GenericAlert;

public class ThresholdEvaluator implements AlertEvaluator

{

 public ThresholdEvaluator()

 {

 super();

 }

 public List evaluate(String alertID, String categoryID, Locale locale, Map properties)

 throws AlertsEngineException

 {

 final List alerts = new ArrayList();

 final GenericAlert alert = new GenericAlert();

 alerts.add(alert);

 return alerts;

 }

}

Populating required fields in the alert instance

This topic shows sample code for setting properties for required fields.

Since the business logic has not been added yet, mark the alert as inactive. The

Alert ID and Category ID fields are set according to the values passed in by the

alerts engine. This causes the alert instance to be traceable back to the alert

definition used by the alerts engine to locate and invoke this evaluator. Finally, use

the current system time to set the creation date. Since the Cache Timeout field was

not set this alert instance will not be cached by the alerts engine.

public List evaluate(String alertID, String categoryID, Locale locale, Map properties)

 throws AlertsEngineException

{

 final List alerts = new ArrayList();

 final GenericAlert alert = new GenericAlert();

 alert.setAlertID(alertID);

 alert.setCategoryID(categoryID);

 final Date currentDate = new Date();

 alert.setCreationDate(currentDate);

// re-evaluate alert after 300 seconds

 alert.setExpirationDate(new Date(currentDate.getTime() + (300 * 1000)));

// set the version ID using the creation date and all of the properties to ensure uniqueness

// and a predictable, repeatable value to make it retrievable from a database by version ID

 final String evaluatedVersionID = alert.getCreationDate().toString();

 final String calculatedVersionID = properties == null ? "[]":properties.values().toString();

 alert.setVersionID(StringUtil.strcat(evaluatedVersionID, ",", calculatedVersionID));

10 WebSphere Dashboard Framework Alerts Module Technical Reference

// Add this alert to the List

 alerts.add(alert);

 return alerts;

}

Adding business logic to an alert evaluator

The ″alertIsActive″ method contains all of the business logic needed to calculate

the state of the alert instance you created.

Following the example steps earlier, the alert instance is active only when the

business value falls below some threshold. A few key points are worth

highlighting.

The business value and threshold are obtained from the properties passed into the

evaluator by the alerts engine. The names ThresholdEvaluator.businessValue and

ThresholdEvaluator.threshold are defined as constants near the top of the class. But

more importantly, these names are exactly the set of property names you will

create as part of the alert definition for this evaluator. In essence, we have defined

the set of properties used by a portlet to customize the evaluator’s behavior at

runtime on a user-by-user basis.

ThresholdEvaluator.businessValue will be provided by a portlet and represents

alert-able data such as EBITA. The other property would likely appear in a

portlet’s customizer to allow a user to specify a custom threshold. In this way the

alert definition, evaluator, and resulting alert instances are customized to specific

users even though the alerts engine uses a single alert definition and evaluator for

all users.

public static final String BUSINESS_VALUE = "ThresholdEvaluator.businessValue";

public static final String THRESHOLD = "ThresholdEvaluator.threshold";

...

protected boolean alertIsActive(Map properties)

{

 boolean isActive = false;

 if(properties != null)

 {

 try

 {

 // Fetch the evaluation values to be used with the business logic.

 final double businessValue =

 Double.parseDouble(properties.get(BUSINESS_VALUE).toString());

 final double threshold =

 Double.parseDouble(properties.get(THRESHOLD).toString());

 // Here is the business logic. The alert is active when the business value

 // falls below the configurable threshold.

 isActive = businessValue < threshold;

 }

 catch(NumberFormatException nfe)

 {

 // An evaluation parameter was not a valid double or was null.

 throw new AlertsEngineException(nfe);

 }

 }

 return isActive;

}

public List evaluate(String alertID, String categoryID, Locale locale, Map properties)

Developing alert evaluators 11

throws AlertsEngineException

{

 final List alerts = new ArrayList();

 final GenericAlert alert = new GenericAlert();

 alert.setAlertID(alertID);

 alert.setCategoryID(categoryID);

// set dates, version ID, etc.

// add this alert to the List

 alerts.add(alert);

 return alerts;

}

It is also worth noting that the evaluate method has changed very little when we

added the business logic. In fact, the only change is in the statement that sets the

alert instances Active field; you are now calling the business logic method

″alertIsActive″ to determine the appropriate value for this field.

Setting localized text

Add some localized text to the alert instance so that it can be displayed to a user

in their preferred locale.

This step involves creating resource bundles for each language the evaluator needs

to support, modifying the evaluate method to get the resource bundle that best

matches the locale passed in by the alerts engine, and using the bundle to fetch

localized strings for the displayable fields of the alert instance.

The code changes are illustrated below. A set of constants has been added that

reference the base name of the resource bundle and several property names that

will appear in all bundles. The evaluate method now has code to get a resource

bundle and use it to set the Displayable Name, Displayable Category, Displayable

Text, and Detailed Displayable Text for the alert instance. Note that in this example

the detailed text is the same as the displayable text. You could make the detailed

text more informative by including the business value and threshold in the text.

private static final String BUNDLE_FILE = "com.mycompany.alerting.evaluators.messages";

private static final String DISPLAY_NAME = "DISPLAY_NAME";

private static final String DISPLAY_CATEGORY = "DISPLAY_CATEGORY";

private static final String DISPLAY_TEXT = "DISPLAY_TEXT";

public List evaluate(String alertID, String categoryID, Locale locale, Map properties)

 throws AlertsEngineException

{

 final List alerts = new ArrayList();

 final GenericAlert alert = new GenericAlert();

 alert.setAlertID(alertID);

 alert.setCategoryID(categoryID);

 alert.setCreationDate(new Date());

 // Get the resource bundle that best matches the user’s preferred locale.

 final Locale localeForBundle = (locale != null) ? locale : Locale.getDefault();

 final ResourceBundle bundle = ResourceBundle.getBundle(BUNDLE_FILE,

 localeForBundle, this.getClass().getClassLoader());

 // Set the alert’s display name, category, text, and detailed text using

 // the fetched resource bundle.

 alert.setDisplayName(bundle.getString(DISPLAY_NAME));

 alert.setDisplayCategory(bundle.getString(DISPLAY_CATEGORY));

 alert.setDisplayText(bundle.getString(DISPLAY_TEXT));

 alert.setDetailedDisplayText(alert.getDisplayText());

12 WebSphere Dashboard Framework Alerts Module Technical Reference

alerts.add(alert);

 return alerts;

}

For reference here is a sample resource bundle named ″messages.properties″ that

could be used with this class. Note that it defines strings for each of the three alert

instance fields we want to localize. In this example, we have chosen to make this

an EBITA threshold alert evaluator. To be consistent with the above example, this

file’s full path is ″WEB-INF/work/source/com/mycompany/alerting/evaluators/

messages.properties.″

DISPLAY_NAME=EBITA Threshold Alert

DISPLAY_CATEGORY=EBITA

DISPLAY_TEXT=EBITA is below threshold.

At this point you have a fully working evaluator that implements a simple

threshold algorithm. The next step is to create an alert definition that references

this evaluator and defines the properties recognized by the evaluator; namely

″ThresholdEvaluator.businessValue″ and ″ThresholdEvaluator.threshold″

Creating the alert definition

Use the Manage Alerts portlet to create an alert definition.

 Related tasks

 Creating or editing an alert definition
Use the alert definition wizard to create or change settings for an alert

definition.

Testing the new alert definition and evaluator

This topic describes how to test an alert evaluator.

The simplest way to test an evaluator is to modify a copy of one of the sample

models that gets installed with the Alerts Module feature set. In the Portlet Factory

Designer make a copy of the model named ″MyAlertsPortlet″ in

models/solutions/alerting. Name the new model something like ″TestEBITAAlert″

and then open it for editing.

Open the builder call named ″getAlertEvalProperties.″ This method is used by the

model to get the alert evaluation values that have been customized by the user.

You will rewrite the method so that it sets values for the

″ThresholdEvaluator.businessValue″ and ″ThresholdEvaluator.threshold″ properties

in a way that forces the alert to be active. Edit the method body so that it appears

as follows. Then apply the changes and run the model.

{

 final Properties properties = new Properties();

 // Custom properties for the EBITAAlert sample.

 properties.setProperty("ThresholdEvaluator.businessValue", "100.0");

 properties.setProperty("ThresholdEvaluator.threshold", "200.0");

 return properties;

}

The business logic added to the evaluator marks the alert as active when the

business value is less than the threshold. This set of properties will satisfy that

logic. Running the model produces a page and an alert with the name ″EBITA

Developing alert evaluators 13

Alert″ now appears. This demonstrates that the alerts engine was able to invoke

the evaluator and that the evaluate method was able to create a localized alert

instance.

Creating a model-based evaluator

This section shown you how to create a model-based evaluator.

The process of creating a model-based evaluator is similar to that of a class-based

evaluator. The main difference is in how the evaluator is packaged and referenced

by an alert definition. You will use the class-based evaluator developed in the

previous section as a starting point.

Examining the LJO’s source file

The source file for the LJO, Orders_Example_MBE_LJO.java, includes evaluation

logic that compares the values in each row of data in supplied by the data service

provider against some threshold values. Each data row meeting the criteria causes

an alert to be generated.

Creating the evaluator model

Create a new empty model that contains a Linked Java Object builder and an

Action List builder.

Follow these steps to create an evaluator model in the same project that you used

for the simple class-based evaluator.

1. In the Portlet Factory Designer, create a model named ″ThresholdEvaluator.″

2. Add a Linked Java Object builder named ″thresholdEvaluator.″ Use the Class

Name picker to select the class name

com.bowstreet.solutions.alerting.examples.Orders_Example_MBE_LJO. Then

save the builder call.

3. Now add an Action List builder call to the model and set its name, parameters,

and return type to be the same as the evaluate method you defined in the

ThresholdEvaluator class.

All evaluators must have an evaluate method that takes the same parameters

and returns values of the same type. You are creating a WebApp evaluate

method that will be a proxy for the actual evaluate method you developed for

the simple class-based evaluator example described earlier. The Arguments

section of the Action List builder call window should have the argument names

and data types shown in the following table.

 Argument Name Data Type

alertID String

categoryID String

locale java.util.Locale

defaultParameters java.util.Map

4. Set the Return Type to be java.util.List.

5. Add actions to the list that invoke the setter methods of the Linked Java

Object’s Java class by clicking the chooser at the far right side of each row in

the Actions table.

14 WebSphere Dashboard Framework Alerts Module Technical Reference

Set the AlertID, Category, Locale, and DefaultParameters. Pass the

corresponding arguments to each method. Finally, use a Return action to get

the alerts.

The Action List should show the following actions when you are done:

EvaluatorLJO.setAlertID(${Arguments/alertID})

EvaluatorLJO.setCategoryID(${Arguments/categoryID})

EvaluatorLJO.setLocale(${Arguments/locale})

EvaluatorLJO.setDefaultParameters(${Arguments/defaultParameters})

Return!${MethodCall/EvaluatorLJO.getAlerts}

6. Save the builder call.

Examining the XML of the sample alert model-based evaluator

The example model-based evaluator works with the Orders_Example_MBE alert

definition.

The example application portlet called ″Alerts Module Example - Sales Orders

Portlet″ uses a data service provider that is referenced in the XML of the alert

definition. You cannot see this reference when you are working with the alert

definition, but if you open the alert definition’s XML file, you will see the

DataSource reference. This XML file can be found at the following location in the

project:

WEB-INF/solutions/alerting/xml_persistence/alert_defs/examples\
Orders_Example_MBE.xml

The following XML is the key element in the alert definition that associates this

definition with a service provider. Without this reference, the model-based

evaluator would not be able to generate alerts for the data in the Sales Orders

Portlet.

<DataProviders>

<DataProvider>

<Model>solutions/alerting/examples/data_providers/Alerting_Examples_Provider_Orders_Stub</Model>

<FetchDataMethod>getAllRecordsReturnSampleData</FetchDataMethod>

<FetchDataFromRowMethod>getAlertPropertiesForRow_ordersAlertData</FetchDataFromRowMethod>

</DataProvider>

</DataProviders>

The model named Alerting_Examples_Provider_Orders_Stub is the data service

provider model for the Sales Orders portlet that comes with the Alerts Module

Examples feature set.

 Related tasks

 Creating or editing an alert definition
Use the alert definition wizard to create or change settings for an alert

definition.

Developing alert evaluators 15

16 WebSphere Dashboard Framework Alerts Module Technical Reference

Adding alerts to a portlet

This section covers the high-level steps of creating an alert and adding it to both a

data portlet and to a My Alerts portlet.

A data portlet is any portlet where specific alerts are evaluated and the results are

displayed or used to drive formatting of page content. The My Alerts portlet

displays a summary of all of the alert instances a user is allowed to see.

Preparing to add alerts to a portlet

Before you can add alerts to a portlet, set up the data service providers and the

alert definition.

Creating data service providers

The recommended approach for handling data access (especially access to data

required by alert evaluators)- is to centralize the access into one or more Service

Provider models. These models then become the one-stop resource in your

application for retrieving application data no matter who needs it.

Successful alert development and integration depends upon the careful design and

implementation of access to an application’s business data. An alert evaluator will

typically need to access several pieces of application data when it is invoked by

the alerts engine to generate alerts for a portal user. A data portlet that uses

alerting to drive the display of fields can often pass some or all of the required

data into an evaluator since the portlet will have already fetched the data for

display to a user. However, when an evaluator is invoked to provide alerts for

display on a My Alerts portlet, it is the responsibility of the evaluator to fetch the

required data. Creating an implementation that ensures business data is available

to both a data portlet My Alerts portlet is the central challenge of alert integration.

When an application’s portlets are being designed careful thought must be given to

whether or not the portlets will ever need to use alerting functionality. Trying to

integrate alerting functionality after-the-fact can be difficult especially in cases

where alert evaluators need large amounts of data and the application’s data

access functionality is mixed into the logic of the portlets or spread across multiple

portlets of an application. A safe approach is to assume that your portlets will

require access to alerting functionality and plan accordingly.

Using Service Provider models has several important benefits.

1. Changes or bug fixes to an application’s data access code are applied in one

place and they immediately become available to all portlets and alert evaluators

that use the Service Provider.

2. The application can use caching inside the Service Provider to improve runtime

data access performance of portlets and alert evaluators.

3. Portlets and alert evaluators will get consistent results when accessing the same

business data.

More precisely, since data access is centralized the application developer can

guarantee that the same code is used to access business data and therefore the

same values will be returned (taking into account changes effected by cache

timeout and data changes in back-end systems).

© Copyright IBM Corp. 2007 17

4. Access control, logging, and auditing are easier to implement and manage since

there is only one place where portlets can go to get data.

Defining alert evaluation properties

When designing an alert evaluator, give careful thought to the values you want

users to be able to customize at runtime. These values will typically be thresholds

that control when an alert is activated.

For example, consider the following example for an EBITA alert evaluator that

determines when the alert is active.

// The Alert is active when the actual EBITA is less than our desired threshold.

if EBITA-Actual < EBITA-Threshold then Activate-EBITA-Alert

The EBITA-Threshold value referenced above is a good candidate to represent as

an alert evaluation property. By making it a property you give users the ability to

set custom threshold values and thus create customized alerts.

The EBITA-Actual value is an example of application business data that needs to

be accessed by the alert evaluator at runtime. A data portlet can provide this value

or the evaluator can fetch the data itself. If the evaluator expects the portlet to

provide this data, then an EBITA-Actual property must be defined as well.

Note: When defining an alert evaluation property, also provide a default value.

The evaluator uses this default value if one is not provided by a portlet at

runtime. In general you should select default property values so that the

alert evaluator will function reasonably well even if a portlet does not

provide any of the required values. The recommended strategy is to select

default values so that the alert is evaluated as being inactive and any other

calculations complete normally. If an evaluator throws an exception when it

is invoked (for example attempting to divide by zero) then the alerts engine

will log the error and skip over the evaluator. However, it is considered very

poor design to use the alerts engine exception handling to cover up

deficiencies in an evaluator’s implementation.

Implementing the alert evaluator

This section explains how to enable the evaluator to determine whether it has been

invoked to support a Data portlet or a My Alerts portlet. This step is important

because it will enable your alerts to work correctly in the context of a Data portlet

or a My Alerts portlet.

By convention the java.util.Map instance passed to an alert evaluator may contain

a string-valued property named ″evaluationMode.″ When this property is present

and has a value of ″single″ the evaluator is being told by the alerts engine to only

evaluate a single instance of the alert. If the property is not defined or has any

other value, then the evaluator is free to evaluate as many alert instances as

needed based upon the business data it is designed to access. A concrete example

will make this clear.

Example

Consider an alert definition and evaluator that deals with sales results for a

company. The sales data is broken out by region and in one data portlet the sales

data for each region is displayed as rows in a table; one region per row. This

portlet has been designed to alert the user when sales for a region goes below

some configurable threshold. If the sales data in a row is below the threshold then

18 WebSphere Dashboard Framework Alerts Module Technical Reference

a sales alert for that region is considered active and the row is highlighted in red.

The portlet contains an Alert Evaluation builder that is responsible for evaluating

the sales alert for each row and applying appropriate formatting based upon the

resulting alert’s state. Before each row of sales data is rendered the Alert

Evaluation builder goes into action gathering up sales data from the row and

passing it to the alerts engine as a set of ″java.util.Map.″ These alert evaluation

properties are then passed to the sales alert evaluator that uses the data to evaluate

the state of the sales alert for the region represented by the row.

For each row of sales data the Alert Evaluation builder also adds evaluationMode

with a value of ″single″ to the property set passed to the evaluator. In effect the

builder is telling the evaluator it is being invoked for a data portlet and that only a

single alert should be evaluated. The alert returned by the evaluator is then used

by the builder to set the row’s formatting.

On a My Alerts portlet the user needs to see a summary of all the currently active

alerts, including any sales alerts. This portlet uses the alerts engine builder to

obtain all active alerts visible to the user. When the sales alert evaluator is invoked

it does not find the evaluationMode property and therefore it knows that it must

obtain the current sales data itself and generate as many sales alerts as necessary.

The evaluator uses a Service Provider model to obtain the sales data broken out by

region. The evaluator iterates over the sales data and evaluates the state of the

alert for each region. The set of alerts is then returned to the alerts engine which

passes the alerts to the builder for display in the My Alerts portlet.

The following code fragment illustrates how the body of the evaluator’s ″evaluate″

method could be structured to handle the evaluationMode property.

try

{

 List alerts = new ArrayList();

 // See if the alert is being evaluated in the "single" mode. This

 // mode indicates that iteration is controlled by the caller and the

 // method should only evaluate a single instance of the alert.

 final boolean isIteratedEvaluation = "single".equals(properties.getProperty("evaluationMode"));

 if(isIteratedEvaluation)

 {

 // The calling portlet is controlling iteration so we are being

 // invoked for a data portlet. Just perform a single evaluation

 // and return a single alert instance.

 }

 else

 {

 // We are controlling iteration so we are being invokes for a My Alerts

 // portlet. Get all of the required business data and return a list of

 // appropriate alerts. As an alternative, we could also just return a

 // single summary alert for display in the My Alerts portlet.

 }

 return alerts;

}

catch(AlertsEngineException aee)

{

 throw new WebAppRuntimeException(aee);

}

Adding alerts to a portlet 19

Enabling the Alert definition

When development of the alert evaluator is complete, use the Manage Alerts

portlet to enable the alert definition so that the alerts engine will begin invoking

the evaluator when portlets make alert requests.

Creating a data portlet

Create a data portlet to flag data as alertable.

Design guidelines for data portlets

After you have a basic data portlet working, follow these guidelines to achieve

consistency for alerts.

v Use the Service Provider models created to support data access from portlets

and evaluators.

This will ensure that all portlets and evaluators are getting a consistent set of

data.

v Create a stylesheet that declares the formats you need when using alerts to drive

page formatting.

The portlet will most likely already employ a common stylesheet used to set

formatting of page elements across your application. You can add to this

common stylesheet or you can create a separate stylesheet that only declares

formats used with alerts. Whichever approach you take, there should be one

place for all alert-based formatting declarations.

Adding an Alert Data builder to the Service Provider model

The Alert Data builder is the key element to getting the alerts engine working with

a Service Provider model.

The alerts engine needs to be able to retrieve data from the Service Provider

model. It also needs to know which data is evaluated for alerts. The alerts engine

can use this data to compare against threshold values. When the data is out of

range, the alerts engine generates an alert.

In an Alert Data builder call, Table-Based Parameters can be declared. Those

parameters declared in the Table-Based Parameters section correspond with field

names in the data. Only these fields can be examined by the alerts engine while

performing the computations to determine if an alert should be generated.

This builder call also has Discrete Parameters. These parameters, when declared,

are most often used as the default threshold values. These thresholds are compared

against the actual data using the logic implemented in the alert evaluator to

determine if an alertable condition exists regarding any given row of data.

Adding a Status Indicator builder to the data portlet model

The Status Indicator builder applies styles defined in a data portlet to provide

visual cues to the users when alerts have been generated.

The Alerts Module Example - Sales Orders portlet demonstrates the use of the

Status Indicator builder. The portlet contains two different Status Indicator builders

that cause certain visual cues to appear in the portlet.

 Related concepts

20 WebSphere Dashboard Framework Alerts Module Technical Reference

Status Indicator builder
Use this builder to automate the highlighting and styling of data values to

show status or alerts based on some logic.

Creating a My Alerts portlet

The Alerts Module feature set comes with a My Alerts portlet, but you can also

create your own.

A My Alerts portlet traditionally displays a summary of all of the alerts a user is

allowed to see. This summary is typically displayed as a table where each row

represents a single alert and, optionally, one or more columns offer links to an alert

details page. This is the standard master/detail pattern implemented in many of

the higher-level view & form builders in Portlet Factory. The first step in creating a

My Alerts portlet is to get a basic master/detail portlet built and working.

Next, add a single instance of the alerts engine builder to the portlet to obtain

access to alerts engine functionality. This builder adds an LJO to the portlet that

contains several methods for querying the alerts engine for alerts. The builder’s

inputs are used to tell the alerts engine about the user on whose behalf alerts are

being requested. Care should be taken to use the same inputs so that the alerts

engine returns data consistently for a user when accessed from a data portlet or a

My Alerts portlet.

The alerts engine builder also has two inputs that are used to feed properties to

the alert evaluators. They are under the Alert Properties group and taken together

are functionally equivalent to the Evaluation Value input from the Alert Evaluation

builder. The Property Source input of the alerts engine builder specifies how

evaluation properties are to be defined: either as an indirect reference or explicitly

as a builder input. Either way, these inputs are used to pass customized thresholds

to the alert evaluators so that they can return alert instances customized for a

specific user.

The list of alerts that should be displayed to a user is obtained by calling the

getvisibleActiveAlerts() method on the alerts engine LJO. The list is returned as a

java.util.List instance containing zero or more alerts objects derived from the class

Alert in the com.bowstreet.solutions.alerting package. You can use the Bean Master

Detail builder to display the list of alerts.

1. Access to alerts engine functionality is obtained by adding a single instance of

the alerts engine builder to the portlet. This builder adds an LJO to the portlet

that contains several methods for querying the alerts engine for alerts.

2. As with the data portlet, the builder’s inputs are used to tell the alerts engine

about the portlet user on whose behalf alerts are being requested. Care should

be taken to use the same inputs so that the alerts engine returns data

consistently for a user when accessed from a data portlet or a My Alerts

portlet.

3. The alerts engine builder also has two inputs that are used to feed properties to

the alert evaluators. They are under the Alert Properties group and taken

together are functionally equivalent to the Evaluation Value input from the

Alert Evaluation builder. The Property Source input of the alerts engine builder

specifies how evaluation properties are to be defined: either as an indirect

reference or explicitly as a builder input. Either way, these inputs are used to

pass customized thresholds to the alert evaluators so that they can return alert

instances customized for a portlet user.

Adding alerts to a portlet 21

4. The list of alerts that should be displayed to a user is obtained by calling the

getvisibleActiveAlerts() method on the alerts engine LJO. The list is returned as

a java.util.List instance containing zero or more alerts objects derived from the

class Alert in the com.bowstreet.solutions.alerting package. You can use the

Bean Master Detail builder to display the list of alerts.

22 WebSphere Dashboard Framework Alerts Module Technical Reference

Alerts directories

This topic lists the location of the installed Alerts Module and Alerts Examples

feature sets on your workstation.

After installation of the Alerts Module and Examples feature sets, the WebApp

project will contain an implementation of the alerts engine, several administration

models, and several sample alert definitions. The following table summarizes the

major groups of artifacts that are installed as part of this feature set. All of the

paths in the table are relative to the WEB-INF directory in the WebApp project.

 Path Description

models/solutions/alerting/admin Contains models used to create, edit, and

delete alert definitions. Contains portlet

models for administrators and system

analysts to manage alert definitions. Also

contains the My Alerts portlet used by end

users to manage the alerts they receive.

models/solutions/alerting/examples Contains sample models demonstrating how

to integrate portlets with the alerts engine.

Contains sample code demonstrating how to

write the various types Java classes that can

be implemented for use with the alerts

engine. Included here are example code for a

class-based evaluator, a LJO for a

model-based evaluator, a custom notifier,

and a custom escalation handler.

models/solutions/alerting/examples/
evaluators

Contains a sample used to demonstrate

writing a model-based alert evaluator.

solutions/alerting/config Contains configuration files needed by the

alerts engine. These files include a properties

file containing settings for alert escalation

handlers.

solutions/alerting/db_persistence Contains additional folders with

configuration and setup files needed to

employ the database persistence manager in

conjunction with a relational database.

solutions/alerting/schemas Contains XML schemas defining the

allowable structure and content of various

XML-based alerts definitions. The alert

definitions contained in the alert_defs folder

must conform to these schemas. Also

contains schemas defining the structure and

content of XML passed to and from external

alerts.

© Copyright IBM Corp. 2007 23

Path Description

solutions/alerting/xml_persistence This directory contains the storage locations

for the various types of data used by the

alerts engine. The XML files contained in the

subdirectories in the Designer represent

default data. At runtime, data created or

modified through the alerts module’s

portlets will be stored in these same

directories in the deployed applications

folder on the portal server.

solutions/alerting/xml_persistence/
acknowledgements

This directory contains alert

acknowledgements persisted by the alerts

engine when the engine has been configured

to use an XML-file persistence manager.

solutions/alerting/xml_persistence/
alert_defs

This directory contains alert definitions

persisted by the alerts engine when the

engine has been configured to use an

XML-file persistence manager.

solutions/alerting/xml_persistence/
alert_defs/examples

Contains all of the sample alert definitions.

These definitions are stored as XML files

and can be used with the XML-file

pPersistence manager. These sample

definitions include sample alert definitions

for model-based, java-based, and external

alerts.

solutions/alerting/xml_persistence/
generic_alerts

This directory contains alert instances

persisted by the alerts engine when the

engine has been configured to use XML File

persistence.

solutions/alerting/xml_persistence/
notifications

This directory contains notifier definitions

persisted by the alerts engine when the

engine has been configured to use XML File

persistence. Each file represents a specific

notifier that is able to send alert notifications

to a user.

solutions/alerting/xml_persistence/
notifier_defs

This directory contains notifier definitions

persisted by the alerts engine when the

engine has been configured to use XML File

persistence. Each file represents a specific

notifier and aggregates all of the information

the alerts engine needs to store about how to

use that notifier to send alerts to users

through the channel represented by the

definition.

solutions/alerting/xml_persistence/
user_alerts

This directory contains user-customized alert

instances persisted by the alerts engine

when the engine has been configured to use

XML File persistence.

solutions/alerting/xml_persistence/
user_contexts

This directory contains user contexts

persisted by the alerts engine when the

engine has been configured to use XML File

persistence. Each file represents a specific

user and aggregates all of the information

the alerts engine needs to store about that

user to serve their alerts.

24 WebSphere Dashboard Framework Alerts Module Technical Reference

Path Description

work/lib Contains various Java class libraries needed

by the alerts engine at runtime. The library

named ″alerts_engine.jar″ contains the alerts

engine implementation itself. You will need

to include this library in your project’s build

path when you write Java-based alert

evaluators.

Alerts directories 25

26 WebSphere Dashboard Framework Alerts Module Technical Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007 27

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Supplemental Copyrights and Acknowledgments

The following Copyrights and Acknowledgments apply to various software

components included in IBM WebSphere Portlet Factory, but neither created nor

owned by IBM.

This offering is based on technology from the Eclipse Project (http://
www.eclipse.org/).

This product includes software developed by the Apache Software Foundation

(http://www.apache.org).

Portions of this software provided by JDOM. Copyright (C) 2001 Brett McLaughlin

& Jason Hunter. All rights reserved. Portions of this software provided by the

28 WebSphere Dashboard Framework Alerts Module Technical Reference

membership of the XML-DEV mailing list. You can obtain a copy of the SAX

copyright status at http:// www.megginson.com /SAX/.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

IBM

Lotus

Portlet Factory

WebSphere

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 29

30 WebSphere Dashboard Framework Alerts Module Technical Reference

����

Program Number: 5724-S21

Printed in USA

SC23-5922-00

	Contents
	Introduction to the Alerts Module Technical Reference
	Developing alert evaluators
	Common themes in evaluator development
	Type-specific evaluator requirements
	Understanding alert instance content
	Alert field semantics
	Handling special alert fields
	Setting the Alert ID field
	Setting the Category ID Field
	Setting the Creation Date field
	Setting the Expiration Date Field
	Setting the Version field

	Creating a simple class-based alert evaluator
	Creating the stub evaluator class
	Creating an unpopulated alert instance and returning it in the list
	Populating required fields in the alert instance
	Adding business logic to an alert evaluator
	Setting localized text
	Creating the alert definition
	Testing the new alert definition and evaluator

	Creating a model-based evaluator
	Examining the LJO's source file
	Creating the evaluator model
	Examining the XML of the sample alert model-based evaluator

	Adding alerts to a portlet
	Preparing to add alerts to a portlet
	Creating data service providers
	Defining alert evaluation properties
	Implementing the alert evaluator
	Enabling the Alert definition

	Creating a data portlet
	Design guidelines for data portlets
	Adding an Alert Data builder to the Service Provider model
	Adding a Status Indicator builder to the data portlet model

	Creating a My Alerts portlet

	Alerts directories
	Notices
	Trademarks

